Unveiling the power of microenvironment in liver regeneration: an in-depth overview.

Front Genet

Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.

Published: December 2023

The liver serves as a vital regulatory hub for various physiological processes, including sugar, protein, and fat metabolism, coagulation regulation, immune system maintenance, hormone inactivation, urea metabolism, and water-electrolyte acid-base balance control. These functions rely on coordinated communication among different liver cell types, particularly within the liver's fundamental hepatic lobular structure. In the early stages of liver development, diverse liver cells differentiate from stem cells in a carefully orchestrated manner. Despite its susceptibility to damage, the liver possesses a remarkable regenerative capacity, with the hepatic lobule serving as a secure environment for cell division and proliferation during liver regeneration. This regenerative process depends on a complex microenvironment, involving liver resident cells, circulating cells, secreted cytokines, extracellular matrix, and biological forces. While hepatocytes proliferate under varying injury conditions, their sources may vary. It is well-established that hepatocytes with regenerative potential are distributed throughout the hepatic lobules. However, a comprehensive spatiotemporal model of liver regeneration remains elusive, despite recent advancements in genomics, lineage tracing, and microscopic imaging. This review summarizes the spatial distribution of cell gene expression within the regenerative microenvironment and its impact on liver regeneration patterns. It offers valuable insights into understanding the complex process of liver regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751322PMC
http://dx.doi.org/10.3389/fgene.2023.1332190DOI Listing

Publication Analysis

Top Keywords

liver regeneration
20
liver
11
regeneration
5
unveiling power
4
power microenvironment
4
microenvironment liver
4
regeneration in-depth
4
in-depth overview
4
overview liver
4
liver serves
4

Similar Publications

Bilio-biliary anastomosis (BBA) is a critical surgical procedure that is performed with the objective of restoring bile duct continuity. This procedure is often required in cases where there has been an injury to the extrahepatic bile ducts or during liver transplantation. Despite advances in surgical techniques, the healing of BBA remains a significant challenge, with complications such as stricture formation and leakage affecting patient outcomes.

View Article and Find Full Text PDF

Cirrhosis is a major cause of morbidity and mortality; however, there are no approved therapies except orthotopic liver transplantation. Preclinical studies showed that bone-marrow-derived macrophage injections reduce inflammation, resolve fibrosis and stimulate liver regeneration. In a multicenter, open-label, parallel-group, phase 2 randomized controlled trial ( ISRCTN10368050 ) in n = 51 adult patients with compensated cirrhosis and Model for End-Stage Liver Disease (MELD) score ≥10 and ≤17, we evaluated the efficacy of autologous monocyte-derived macrophage therapy (n = 27) compared to standard medical care (n = 24).

View Article and Find Full Text PDF

Background: Chemotherapy drugs may lead to hepatic injury, which is considered one of the limitations of these drugs.

Objectives: The aim of this study was to evaluate the effect of quercetin (QUE) on M1/M2 macrophage polarization and hepatoprotective effect in cyclophosphamide (CTX)-induced liver toxicity.

Methods: Twenty-four mice were divided into four groups (Control, QUE, CTX, CTX + QUE).

View Article and Find Full Text PDF

Intracellular CIRP promotes liver regeneration via STAT3 signaling pathway activation after partial hepatectomy in mice.

Int J Mol Med

March 2025

National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.

Cold‑inducible RNA‑binding protein (CIRP) is a cold shock protein implicated in the regulation of multiple biological processes depending on its cellular localization. However, to the best of our knowledge, the role of CIRP in liver regeneration and injury after hepatectomy has not been investigated. The present study was therefore designed to explore whether CIRP is involved in liver regeneration after hepatectomy and its specific role and underlying molecular mechanism.

View Article and Find Full Text PDF

Background: Tissue damage by viral hepatitis is a major cause of morbidity and mortality worldwide. Oxidation reactions and reactive oxygen species (ROS) transform proteins and lipids in plasma low-density lipoproteins (LDL) into the abnormal oxidized LDL (ox-LDL). Hepatitis C virus (HCV) infection induces oxidative/nitrosative stress from multiple sources, including the inducible nitric oxide synthase (iNOS), the mitochondrial electron transport chain, hepatocyte NAD(P)H oxidases (NOX enzymes), and inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!