Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Aim: Milk can introduce antibiotics into the human diet which poses a public health risk. Therefore, a study to determine the tetracycline residue in dairy milk and its health risk assessment is needed. A cross-sectional study was performed to detect tetracycline residues in fresh dairy milk samples collected from the districts of Malang, Boyolali, and Padang Panjang, Indonesia, and to evaluate dietary exposure to tetracycline residues through milk consumption in 10-12-year-old children and adults.
Materials And Methods: A total of 203 fresh dairy milk samples were collected from local and smallholder dairy cows in Malang, Boyolali, and Padang Panjang in April and August 2018. High-performance liquid chromatography equipped with a photodiode array at 355 and 368 nm was used to detect tetracycline residues. Data were evaluated for dietary exposure assessment.
Results: The results showed that the most common residue found was chlortetracycline (8.37%), followed by tetracycline (7.88%) and oxytetracycline (5.91%) in the concentration range of 14.8-498.4, 11.7-49.4, and 11.6-85.6 ng/g, respectively. Seven (3.45%) samples exceeded the maximum residue limit (MRL) for chlortetracycline. However, neither oxytetracycline nor tetracycline residues exceeded the MRL. The mean concentration of the tetracycline residues was 21.76-137.05 ng/g, resulting in an estimated daily intake of 16.46-172.83 ng/kg body weight/day.
Conclusion: Tetracycline residues were found in almost all milk sampling locations. The highest prevalence and residue concentration were obtained from chlortetracycline. Estimated daily intake of tetracycline through milk by 10-12-year-old children and adult consumers was low and the risk to consumers was negligible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10750746 | PMC |
http://dx.doi.org/10.14202/vetworld.2023.2230-2235 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!