A novel reconstruction strategy in esophagectomy for megaesophagus.

JTCVS Tech

Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.

Published: December 2023

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10750870PMC
http://dx.doi.org/10.1016/j.xjtc.2023.09.014DOI Listing

Publication Analysis

Top Keywords

novel reconstruction
4
reconstruction strategy
4
strategy esophagectomy
4
esophagectomy megaesophagus
4
novel
1
strategy
1
esophagectomy
1
megaesophagus
1

Similar Publications

A novel hybrid model for air quality prediction via dimension reduction and error correction techniques.

Environ Monit Assess

December 2024

School of Big Data and Statistics, Anhui University, Hefei, 230601, Anhui, China.

The monitoring of air pollution through the air quality index (AQI) is a fundamental tool in ensuring public health protection. Accurate prediction of air quality is necessary for the timely implementation of measures to control and manage air pollution, thereby mitigating its detrimental impact on human health. A novel hybrid prediction model is proposed, which is EMD-KMC-EC-SSA-VMD-LSTM.

View Article and Find Full Text PDF

RTEL1 is upregulated in gastric cancer and promotes tumor growth.

J Cancer Res Clin Oncol

December 2024

Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Wuxi, Jiangsu, 214062, China.

Gastric cancer (GC) is one of the most common cancers worldwide, with increasing incidence and mortality rates. It is typically diagnosed at advanced stages, leading to a poor prognosis. GC is a highly heterogeneous disease and its progression is associated with complex interplay between genetic and environmental factors.

View Article and Find Full Text PDF

Surgery using skin flaps is essential for soft tissue reconstruction. However, postoperative ischemic injury of the skin flap is a major complication and a top concern after the surgery. Currently, evidence-based drugs to fully prevent ischemic injury are not available.

View Article and Find Full Text PDF

Scalable Top-Down Approach for Recycling Highly Degraded Spent LiFePO via Lattice Fragmentation-Regeneration.

Small

December 2024

State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Designing efficient, scalable, and eco-friendly recycling technologies is crucial for addressing the widespread decommissioning of spent lithium-ion batteries. Here, an innovative top-down regeneration method is introduced to rejuvenate highly degraded LiFePO. Initially, the crystal structure of spent LiFePO is destroyed via the oxidation process, followed by the reconstruction of the LiFePO lattice through the reduction process.

View Article and Find Full Text PDF

This study explores the potential of DNA hydrogels as a novel approach for diagnosing and treating Oral Squamous Cell Carcinoma (OSCC). In the experiment, DNA hydrogels are synthesized and loaded with Zinc Oxide Nanoparticles (ZnO NPs) and Cisplatin. In vitro experiments evaluated drug delivery efficacy and the effect on cancer cell viability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!