Large-scale fermentation processes involve complex dynamic interactions between mixing, reaction, mass transfer, and the suspended biomass. Empirical correlations or case-specific computational simulations are usually used to predict and estimate the performance of large-scale bioreactors based on data acquired at bench scale. In this two-part-study, one-dimensional axial diffusion equations were studied as a general and predictive model of large-scale bioreactors. This second part focused on typical fed-batch operations where substrate gradients are known to occur, and characterized the profiles of substrate, pH, oxygen, carbon dioxide, and temperature. The physically grounded steady-state axial diffusion equations with first- and zeroth-order kinetics yielded analytical solutions to the relevant variables. The results were compared with large-scale Escherichia coli and Saccharomyces cerevisiae experiments and simulations from the literature, and good agreement was found in substrate profiles. The analytical profiles obtained for dissolved oxygen, temperature, pH, and were also consistent with the available data. Distribution functions for the substrate were defined, and efficiency factors for biomass growth and oxygen uptake rate were derived. In conclusion, this study demonstrated that axial diffusion equations can be used to model the effects of mixing and reaction on the relevant variables of typical large-scale fed-batch fermentations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.28635 | DOI Listing |
Med Image Anal
January 2025
School of Biomedical Engineering and Imaging Sciences, King's College London, UK. Electronic address:
Atrial fibrillation (AF), impacting nearly 50 million individuals globally, is a major contributor to ischaemic strokes, predominantly originating from the left atrial appendage (LAA). Current clinical scores like CHA₂DS₂-VASc, while useful, provide limited insight into the pro-thrombotic mechanisms of Virchow's triad-blood stasis, endothelial damage, and hypercoagulability. This study leverages biophysical computational modelling to deepen our understanding of thrombogenesis in AF patients.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Mathematical and Physical Sciences, Catholic University of Temuco, Temuco 4813302, Chile.
: A previous study investigated the in vitro release of methylene blue (MB), a widely used cationic dye in biomedical applications, from nanocellulose/nanoporous silicon (NC/nPSi) composites under conditions simulating body fluids. The results showed that MB release rates varied significantly with the nPSi concentration in the composite, highlighting its potential for controlled drug delivery. To further analyze the relationship between diffusion dynamics and the MB concentration, this study developed a finite element (FE) method to solve Fick's equations governing the drug delivery system.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Mechanical Engineering, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Calea Sighișoarei 2, 540485 Târgu-Mureş, Romania.
A comparative adsorption study was carried out for methylene blue (MB) and its 3,7-bis(N,N-(2-hydroxyethyl)amino)-phenothiazinium dye analog (MBI). Batch experiments employed aqueous solutions and commercial filter paper. Out of seven kinetic models tested by means of four quality statistical indicators, the pseudo-second-order, the double-exponential, and the bi-linear Weber-Morris equations were best fits.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Mechatronics Engineering Department, Yildiz Technical University, Istanbul 34349, Turkey.
The efficient mixing of fluids at microscale dimensions presents challenges due to the dominant laminar flow regime which restricts convective mixing. This study introduces a numerical analysis of a novel microrobotic mixing system with a levitated propeller robot, driven by magnetic fields, within a Y-shaped microchannel with a square cross-section (500 × 500 μm). Our research investigates the fluid mixing effectiveness facilitated by the microrobot through various levitation heights and orientations to enhance the mixing index (MI).
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 H. Jordan Str., 41-808 Zabrze, Poland.
One of the most important formalisms used to describe membrane transport is Onsager-Peusner thermodynamics (TOP). Within the TOP framework, a procedure has been developed for the transformation of the Kedem-Katchalsky (K-K) equations for the transport of binary electrolytic solutions across a membrane into the Kedem-Katchalsky-Peusner (K-K-P) equations. The membrane system with an Ultra Flo 145 Dialyser membrane used for hemodialysis and aqueous NaCl solutions was used as experimental setup.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!