A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Digital Mobility Measures: A Window into Real-World Severity and Progression of Parkinson's Disease. | LitMetric

Background: Real-world monitoring using wearable sensors has enormous potential for assessing disease severity and symptoms among persons with Parkinson's disease (PD). Many distinct features can be extracted, reflecting multiple mobility domains. However, it is unclear which digital measures are related to PD severity and are sensitive to disease progression.

Objectives: The aim was to identify real-world mobility measures that reflect PD severity and show discriminant ability and sensitivity to disease progression, compared to the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scale.

Methods: Multicenter real-world continuous (24/7) digital mobility data from 587 persons with PD and 68 matched healthy controls were collected using an accelerometer adhered to the lower back. Machine learning feature selection and regression algorithms evaluated associations of the digital measures using the MDS-UPDRS (I-III). Binary logistic regression assessed discriminatory value using controls, and longitudinal observational data from a subgroup (n = 33) evaluated sensitivity to change over time.

Results: Digital measures were only moderately correlated with the MDS-UPDRS (part II-r = 0.60 and parts I and III-r = 0.50). Most associated measures reflected activity quantity and distribution patterns. A model with 14 digital measures accurately distinguished recently diagnosed persons with PD from healthy controls (81.1%, area under the curve: 0.87); digital measures showed larger effect sizes (Cohen's d: [0.19-0.66]), for change over time than any of the MDS-UPDRS parts (Cohen's d: [0.04-0.12]).

Conclusions: Real-world mobility measures are moderately associated with clinical assessments, suggesting that they capture different aspects of motor capacity and function. Digital mobility measures are sensitive to early-stage disease and to disease progression, to a larger degree than conventional clinical assessments, demonstrating their utility, primarily for clinical trials but ultimately also for clinical care. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mds.29689DOI Listing

Publication Analysis

Top Keywords

digital measures
20
mobility measures
16
digital mobility
12
parkinson's disease
12
measures
10
digital
8
disease
8
real-world mobility
8
disease progression
8
movement disorder
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!