Cardiac sympathetic overactivation is a critical driver in the progression of acute myocardial infarction (AMI). The left middle cervical ganglion (LMCG) is an important extracardiac sympathetic ganglion. However, the regulatory effects of LMCG on AMI have not yet been fully documented. In the present study, we detected that the LMCG was innervated by abundant sympathetic components and exerted an excitatory effect on the cardiac sympathetic nervous system in response to stimulation. In canine models of AMI, targeted ablation of LMCG reduced the sympathetic indexes of heart rate variability and serum norepinephrine, resulting in suppressed cardiac sympathetic activity. Moreover, LMCG ablation could improve ventricular electrophysiological stability, evidenced by the prolonged ventricular effective refractory period, elevated action potential duration, increased ventricular fibrillation threshold, and enhanced connexin43 expression, consequently showing antiarrhythmic effects. Additionally, compared with the control group, myocardial infarction size, circulating cardiac troponin I, and myocardial apoptosis were significantly reduced, accompanied by preserved cardiac function in canines subjected to LMCG ablation. Finally, we performed the left stellate ganglion (LSG) ablation and compared its effects with LMCG destruction. The results indicated that LMCG ablation prevented ventricular electrophysiological instability, cardiac sympathetic activation, and AMI-induced ventricular arrhythmias with similar efficiency as LSG denervation. In conclusion, this study demonstrated that LMCG ablation suppressed cardiac sympathetic activity, stabilized ventricular electrophysiological properties and mitigated cardiomyocyte death, resultantly preventing ischemia-induced ventricular arrhythmias, myocardial injury, and cardiac dysfunction. Neuromodulation therapy targeting LMCG represented a promising strategy for the treatment of AMI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00395-023-01026-w | DOI Listing |
J Interv Card Electrophysiol
January 2025
Rooney Heart Institute, 311 9th St N #201, Naples, FL, 34102, USA.
Introduction: The role of the sympathetic nervous system in the initiation and continuation of ventricular tachyarrhythmias (VTA) is well established. However, whether CSD reduces implantable cardioverter-defibrillator (ICD) shocks and recurrent VTA is still uncertain.
Methods: A comprehensive literature search was performed at Medline and Embase until March 2023.
Heart Fail Rev
January 2025
Department of Cardiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany.
Renal Denervation (RDN) has emerged over the last decade as a third pillar in the treatment of arterial hypertension, alongside pharmacotherapy and lifestyle modifications. Mechanistically, it reduces central sympathetic overactivation, a process also relevant to heart failure. In this mini-review, we summarize the development of RDN for heart failure, discuss the current evidence supporting its effects, and provide an outlook on future developments.
View Article and Find Full Text PDFPediatr Nephrol
January 2025
Cardiology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt.
Background: Changes in cardiac function and structure as well as their association with the cardiac autonomic nervous system remain incompletely characterized in children with stage 5 chronic kidney disease (CKD) receiving hemodialysis (HD).
Methods: A prospective observational cohort study was conducted on 40 Egyptian children with CKD on regular HD compared to 40 age- and sex-matched healthy children. All participants underwent thorough clinical examination, laboratory investigations, 24-h Holter monitoring, and 2D/4D echocardiographic study (conventional and advanced modalities).
Front Sports Act Living
January 2025
Department of Internal and Family Medicine, Lesya Ukrainka Volyn National University, Lutsk, Ukraine.
Introduction: Our goal was to determine the differences in changes in cardiovascular and cardiorespiratory interaction indicators during a respiratory maneuver with a change in breathing rate in athletes with different types of heart rate regulation.
Methods: The results of a study of 183 healthy men aged 21.2 ± 2.
Nephrol Dial Transplant
January 2025
Clinica Medica, University Milano-Bicocca and University of Milano-Bicocca, Milan, Italy.
The autonomic nervous system plays a crucial role in regulating physiological processes and maintaining homeostasis through its two branches: the sympathetic nervous system (SNS) and the parasympathetic nervous system. Dysregulation of the autonomic system, characterized by increased sympathetic activity and reduced parasympathetic tone, is a common feature in chronic kidney disease (CKD) and cardiovascular disease. This imbalance contributes to a pro-inflammatory state, exacerbating disease progression and increasing the risk for cardiovascular events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!