Background/aim: Pancreatic cancer is one of the most lethal malignant cancers worldwide and the seventh most common cause of cancer-related death in both sexes. Herein, we analyzed open access data and discovered that expression of a gene called deoxynucleotidyltransferase terminal-interacting protein 2 (DNTTIP2) is linked to prognosis of pancreatic ductal adenocarcinoma (PDAC). We then elucidated the role of DNTTIP2 in the proliferation of pancreatic cancer cells in vitro.
Materials And Methods: A WST-8 assay, cell cycle analysis, Annexin-V staining, quantitative reverse transcription-PCR, and western blot analysis were conducted to assess cell proliferation, cell cycle, apoptosis, and expression of DNTTIP2 mRNA and protein, respectively, in DNTTIP2-depleteted MIA-PaCa-2 and PK-1 cells.
Results: Depletion of DNTTIP2 induced G arrest in MIA-PaCa-2 cells by decreasing expression of special AT-rich sequence binding protein 1 (SATB1) and cyclin-dependent kinase 6 (CDK6). In addition, depletion of DNTTIP2 induced G arrest in PK-1 cells by decreasing expression of CDK1. Depletion of DNTTIP2 did not induce apoptosis in MIA-PaCa-2 or PK-1 cells.
Conclusion: DNTTIP2 is involved in proliferation of pancreatic cancer cells. Thus, DNTTIP2 is a potential target for inhibiting progression of pancreatic cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756344 | PMC |
http://dx.doi.org/10.21873/cgp.20426 | DOI Listing |
Probiotics Antimicrob Proteins
December 2024
Division of Gastroenterology, Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea.
Pancreatic cancer is influenced by interactions between cancer cells and the tumor microenvironment (TME), including tumor-infiltrating lymphocytes (TILs). Specifically, CD8 + T cells impact prognosis by eliminating cancer cells. Recent studies have revealed that microbiomes are present in pancreatic tissues and may affect tumor growth and immune responses.
View Article and Find Full Text PDFClin Exp Metastasis
December 2024
Christopher S. Bond Life Sciences Center 540F, University of Missouri, 1201 E Rollins, Columbia, MO, 65211, USA.
Copper promotes tumor growth and metastasis through a variety of mechanisms, most notably as a cofactor within the lysyl oxidase (LOX) family of secreted cuproenzymes. Members of this family, which include LOX and LOX-like enzymes LOXL1-4, catalyze the copper-dependent crosslinking of collagens and elastin within the extracellular matrix (ECM). Elevated LOX expression is associated with higher incidence and worse prognosis in multiple cancers, including colorectal, breast, pancreatic, and head and neck.
View Article and Find Full Text PDFMol Omics
December 2024
CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
Cancer remains the second leading cause of death worldwide, surpassed only by cardiovascular disease. From the different types of cancer, pancreatic cancer (PaC) has one of the lowest survival rates, with a survival rate of about 20% after the first year of diagnosis and about 8% after 5 years. The lack of highly sensitive and specific biomarkers, together with the absence of symptoms in the early stages, determines a late diagnosis, which is associated with a decrease in the effectiveness of medical intervention, regardless of its nature - surgery and/or chemotherapy.
View Article and Find Full Text PDFScand J Gastroenterol
December 2024
Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
Background: Pancreatic adenocarcinoma (PAAD) is a deadly cancer marked by extensive collagen deposition and limited response to immunotherapy. Discoidin domain receptor1 (DDR1), part of the transmembrane receptor tyrosine kinase family, is linked to inflammation regulation and immune cell infiltration. However, its role in controlling cytokines and chemokines in the microenvironment of PAAD is still unclear.
View Article and Find Full Text PDFUnlabelled: Proteolysis of hydrophobic helices is required for complete breakdown of every transmembrane protein trafficked to the lysosome and sustains high rates of endocytosis. However, the lysosomal mechanisms for degrading hydrophobic domains remain unknown. Combining lysosomal proteomics with functional genomic data mining, we identify Lysosomal Leucine Aminopeptidase (LyLAP; formerly Phospholipase B Domain-Containing 1) as the hydrolase most tightly associated with elevated endocytic activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!