A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Towards the automated detection of interictal epileptiform discharges with magnetoencephalography. | LitMetric

Towards the automated detection of interictal epileptiform discharges with magnetoencephalography.

J Neurosci Methods

Université libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LNbT), Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), Hôpital Erasme, Service of translational Neuroimaging, Brussels, Belgium.

Published: March 2024

Background: The analysis of clinical magnetoencephalography (MEG) in patients with epilepsy traditionally relies on visual identification of interictal epileptiform discharges (IEDs), which is time consuming and dependent on subjective criteria.

New Method: Here, we explore the ability of Independent Components Analysis (ICA) and Hidden Markov Modeling (HMM) to automatically detect and localize IEDs. We tested our pipelines on resting-state MEG recordings from 10 school-aged children with (multi)focal epilepsy.

Results: In focal epilepsy patients, both pipelines successfully detected visually identified IEDs, but also revealed unidentified low-amplitude IEDs. Success was more mitigated in patients with multifocal epilepsy, as our automated pipeline missed IED activity associated with some foci-an issue that could be alleviated by post-hoc manual selection of epileptiform ICs or HMM states.

Comparison With Existing Methods: We compared our results with visual IED detection by an experienced clinical magnetoencephalographer, getting heightened sensitivity and requiring minimal input from clinical practitioners.

Conclusions: IED detection based on ICA or HMM represents an efficient way to identify IED localization and timing. The development of these automatic IED detection algorithms provide a step forward in clinical MEG practice by decreasing the duration of MEG analysis and enhancing its sensitivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2023.110052DOI Listing

Publication Analysis

Top Keywords

ied detection
12
interictal epileptiform
8
epileptiform discharges
8
ied
5
automated detection
4
detection interictal
4
discharges magnetoencephalography
4
magnetoencephalography background
4
background analysis
4
clinical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!