Dynamic functional network connectivity based on spatial source phase maps of complex-valued fMRI data: Application to schizophrenia.

J Neurosci Methods

Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.

Published: March 2024

Background: Dynamic spatial functional network connectivity (dsFNC) has shown advantages in detecting functional alterations impacted by mental disorders using magnitude-only fMRI data. However, complete fMRI data are complex-valued with unique and useful phase information.

Methods: We propose dsFNC of spatial source phase (SSP) maps, derived from complex-valued fMRI data (named SSP-dsFNC), to capture the dynamics elicited by the phase. We compute mutual information for connectivity quantification, employ statistical analysis and Markov chains to assess dynamics, ultimately classifying schizophrenia patients (SZs) and healthy controls (HCs) based on connectivity variance and Markov chain state transitions across windows.

Results: SSP-dsFNC yielded greater dynamics and more significant HC-SZ differences, due to the use of complete brain information from complex-valued fMRI data.

Comparison With Existing Methods: Compared with magnitude-dsFNC, SSP-dsFNC detected additional and meaningful connections across windows (e.g., for right frontal parietal) and achieved 14.6% higher accuracy for classifying HCs and SZs.

Conclusions: This work provides new evidence about how SSP-dsFNC could be impacted by schizophrenia, and this information could be used to identify potential imaging biomarkers for psychotic diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2023.110049DOI Listing

Publication Analysis

Top Keywords

fmri data
16
complex-valued fmri
12
functional network
8
network connectivity
8
spatial source
8
source phase
8
fmri
5
dynamic functional
4
connectivity
4
connectivity based
4

Similar Publications

Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.

View Article and Find Full Text PDF

Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain.

View Article and Find Full Text PDF

This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers.

View Article and Find Full Text PDF

Objective: The objective was to comprehensively investigate the clinical, molecular, and imaging characteristics and outcomes of H3 K27-altered diffuse midline glioma (DMG) in adults.

Methods: Retrospective chart and imaging reviews were performed in 111 adult patients with H3 K27-altered DMG from two tertiary institutions. Clinical, molecular, imaging, and survival characteristics were analyzed.

View Article and Find Full Text PDF

Background: Glioblastoma is characterized by neovascularization and diffuse infiltration into the adjacent tissue. T2*-based dynamic susceptibility contrast (DSC) MR perfusion images provide useful measurements of the biomarkers associated with tumor perfusion. This study aimed to distinguish infiltrating tumors from vasogenic edema in glioblastomas using DSC-MR perfusion images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!