A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A mechanistic approach to arsenic adsorption and immobilization in aqueous solution, groundwater, and contaminated paddy soil using pine-cone magnetic biochar. | LitMetric

Arsenic (As) poisoning in groundwater and rice paddy soil has increased globally, impacting human health and food security. There is an urgent need to deal with As-contaminated groundwater and soil. Biochar can be a useful remedy for toxic contaminants. This study explains the synthesis of pinecone-magnetic biochar (PC-MBC) by engineering the pinecone-pristine biochar with iron salts (FeCl.6HO and FeSO.7HO) to investigate its effects on As(V) adsorption and immobilization in water and soil, respectively. The results indicated that PC-MBC can remediate As(V)-contaminated water, with an adsorption capacity of 12.14 mg g in water. Isotherm and kinetic modeling showed that the adsorption mechanism involved multilayer, monolayer, and diffusional processes, with chemisorption operating as the primary interface between As(V) and biochar. Post-adsorption analysis of PC-MBC, using FTIR and XRD, further revealed chemical fixing and outer-sphere complexation between As(V) and Fe, O, NH, and OH as the main reasons for As(V) adsorption onto PC-MBC. Recycling of PC-MBC also had excellent adsorption even after several regeneration cycles. Similarly, PC-MBC successfully immobilized As in paddy soil. Single and sequential extraction results showed the transformation of mobile forms of As to a more stable form, confirmed by non-destructive analysis using SEM, EDX, and elemental dot mapping. Thus, Fe-modified pine-cone biochar could be a suitable and cheap adsorbent for As-contaminated water and soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.117922DOI Listing

Publication Analysis

Top Keywords

paddy soil
12
adsorption immobilization
8
asv adsorption
8
water soil
8
adsorption
6
soil
6
biochar
6
pc-mbc
6
mechanistic approach
4
approach arsenic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!