Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Large-size spherical sorbents with particle size of 10-50 μm are widely applied in separation fields, however it is still a great challenge to synthesize such large-size spherical covalent organic framework (COF). In this work, a type of large-size porous 3D COF was size-controablly synthesized via a two-step strategy, in which a large-size porous 3D spherical polymer was prepared first through a Pickering emulsion polymerization using nano silica as the stabilizer, and subsequently it was converted into porous spherical 3D COF by a solvothermal method. The as-prepared porous spherical COF (COF-320 as a model) showed size-controllable uniform spherical morphology within 15-45 μm, large specific surface area, fine crystalline structure, and good chemical stability. When used as the sorbent for dispersive solid-phase extraction (d-SPE) of bisphenol F (BPF), the porous spherical COF-320 (15 μm) displayed high adsorption capacity (Q = 335.6 mg/g), high enrichment factor (80 folds), and good reusability (at least five cycles). By coupling the d-SPE method to HPLC, a new analytical approach was developed and successfully applied to the determination of trace BPF in two water samples, an orange juice and a standard sample with recoveries of 96.0-102.2 % (RSD = 1.1-1.5 %), 95.7-97.4 % (RSD = 1.4-4.4 %) and 98.7 % (RSD = 2.3 %), respectively. The limit of detection (S/N = 3) and limit of quantification (S/N = 10) were 0.1 and 0.3 ng/mL, respectively. The new synthesis strategy opens a viable way to prepare large-size porous spherical COFs, and the developed analytical method can be potentially applied to sensitively detect the trace BPF in water samples and beverages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2023.125601 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!