Generalized thermomechanical interaction in two-dimensional skin tissue using eigenvalues approach.

J Therm Biol

Department of Computer Science, College of Computer, Qassim University, Buraydah, 52571, Saudi Arabia. Electronic address:

Published: January 2024

The aim of this work is to analytically study the thermo-mechanical response of two-dimensional skin tissues when subjected to instantaneous heating. A complete understanding of the heat transfer process and the associated thermal and mechanical effects on the patient's skin tissues is critical to ensuring the effective applications of thermal therapy techniques and procedures. The surface boundary of the half-space undergoes a heat flux characterized by an exponentially decaying pulse, while maintaining a condition of zero traction. The utilization of Laplace and Fourier transformations is employed, and the resulting formulations are then applied to human tissues undergoing regional hyperthermia treatment for cancer therapy. To perform the inversion process for Laplace and Fourier transforms, a numerical programming method based on Stehfest numerical inverse method is employed. The findings demonstrate that blood perfusion rate and thermal relaxation time significantly influence all the analyzed distributions. Numerical findings suggest that thermo-mechanical waves propagate through skin tissue over finite distances, which helps mitigate the unrealistic predictions made by the Pennes' model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtherbio.2023.103777DOI Listing

Publication Analysis

Top Keywords

two-dimensional skin
8
skin tissue
8
skin tissues
8
laplace fourier
8
generalized thermomechanical
4
thermomechanical interaction
4
interaction two-dimensional
4
skin
4
tissue eigenvalues
4
eigenvalues approach
4

Similar Publications

The concept of non-Hermiticity has expanded the understanding of band topology, leading to the emergence of counter-intuitive phenomena. An example is the non-Hermitian skin effect (NHSE), which involves the concentration of eigenstates at the boundary. However, despite the potential insights that can be gained from high-dimensional non-Hermitian quantum systems in areas such as curved space, high-order topological phases and black holes, the realization of this effect in high dimensions remains unexplored.

View Article and Find Full Text PDF

Dynamic control of 2D non-Hermitian photonic corner skin modes in synthetic dimensions.

Nat Commun

December 2024

Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD, USA.

Non-Hermitian models describe the physics of ubiquitous open systems with gain and loss. One intriguing aspect of non-Hermitian models is their inherent topology that can produce intriguing boundary phenomena like resilient higher-order topological insulators (HOTIs) and non-Hermitian skin effects (NHSE). Recently, time-multiplexed lattices in synthetic dimensions have emerged as a versatile platform for the investigation of these effects free of geometric restrictions.

View Article and Find Full Text PDF

Currently, the 'gold standard' for diagnosis of Psoroptes ovis infections is detecting Psoroptes mites or eggs in skin scrapings under microscopy, but it is prone to be mis-diagnosed for detecting early infection of P. ovis. Hence, seeking a reliable diagnostic technique for detecting early-stage mite infections is extremely desirable.

View Article and Find Full Text PDF

The delivery of active functional molecules across the skin is laborious due to its structural intricacy and exceptional barrier characteristics. Developments in nanotechnology yielded innovative transport vehicles derived from nanomaterials to reinforce the skin's ability to interact with active ingredient molecules and increase its bioavailability. The current study employed crystalline inorganic two-dimensional double hydroxides (LDHs) as an efficient carrier and delivery vehicle for folic acid (FA) in a topical skincare formulation.

View Article and Find Full Text PDF

Royal jelly (RJ), a natural product secreted by honeybees, is widely used in topical skincare products to help maintain cutaneous homeostasis. Despite its popularity, the mechanism through which RJ exerts its effects on the skin has not been fully elucidated. This study aimed to explore the impact of RJ on the proliferative ability and senescence of human primary epidermal keratinocytes (HPEKs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!