A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differences in the management of intracellular redox state between wine yeast species dictate their fermentation performances and metabolite production. | LitMetric

Differences in the management of intracellular redox state between wine yeast species dictate their fermentation performances and metabolite production.

Int J Food Microbiol

UMR SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France; South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa. Electronic address:

Published: February 2024

The maintenance of the balance between oxidised and reduced redox cofactors is essential for the functioning of many cellular processes in all living organisms. While the electron transport chain plays a key role in maintaining this balance under respiratory conditions, its inactivity in the absence of oxygen poses a challenge that yeasts such as Saccharomyces cerevisiae overcome through the production of various metabolic end-products during alcoholic fermentation. In this study, we investigated the diversity occurring between wine yeast species in their management of redox balance and its consequences on the fermentation performances and the formation of metabolites. To this aim, we quantified the changes in NAD(H) and NADP(H) concentrations and redox status throughout the fermentation of 6 wine yeast species. While the availability of NADP and NADPH remained balanced and stable throughout the process for all the strains, important differences between species were observed in the dynamics of NAD and NADH intracellular pools. A comparative analysis of these data with the fermentation capacity and metabolic profiles of the strains revealed that Saccharomyces cerevisiae, Torulaspora delbrueckii and Lachancea thermotolerans strains were able to reoxidise NADH to NAD throughout the fermentation, mainly by the formation of glycerol. These species exhibited good fermentation capacities. Conversely, Starmerella bacillaris and Metschnikowia pulcherrima species were unable to regenerate NAD as early as one third of sugars were consumed, explaining at least in part their poor growth and fermentation performances. The Kluyveromyces marxianus strain exhibited a specific behaviour, by maintaining similar levels of NAD and NADH throughout the process. This balance between oxidised and reduced redox cofactors ensured the consumption of a large part of sugars by this species, despite a low fermentation rate. In addition, the dynamics of redox cofactors affected the production of by-products by the various strains either directly or indirectly, through the formation of precursors. Major examples are the increased formation of glycerol by S. bacillaris and M. pulcherrima strains, as a way of trying to reoxidise NADH, and the greater capacity to produce acetate and derived metabolites of yeasts capable of maintaining their redox balance. Overall, this study provided new insight into the contribution of the management of redox status to the orientation of yeast metabolism during fermentation. This information should be taken into account when developing strategies for more efficient and effective fermentation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijfoodmicro.2023.110537DOI Listing

Publication Analysis

Top Keywords

wine yeast
12
yeast species
12
fermentation performances
12
redox cofactors
12
fermentation
11
redox
8
balance oxidised
8
oxidised reduced
8
reduced redox
8
saccharomyces cerevisiae
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!