An iodine(III)-catalyzed general method for the synthesis of fully functionalized NH-pyrazoles and isoxazoles from α,β-unsaturated hydrazones and oximes, respectively, via cyclization/1,2-aryl shift/aromatization/detosylation, has been developed. The reaction progresses through an -Baldwin 5-- cyclization. It gives direct access to an advanced intermediate for the preparation of valdecoxib and parecoxib, drugs used for COX-inhibition. In addition, a method for -alkynylation of pyrazoles has also been developed in the presence of TIPS-EBX.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.3c04057DOI Listing

Publication Analysis

Top Keywords

synthesis fully
8
fully functionalized
8
functionalized nh-pyrazoles
8
nh-pyrazoles isoxazoles
8
isoxazoles αβ-unsaturated
8
αβ-unsaturated hydrazones
8
hydrazones oximes
8
iodobenzene-catalyzed synthesis
4
oximes 12-aryl
4
12-aryl shift
4

Similar Publications

A series of cyclometalated Au(III) complexes [Au(C^N^C)(C-L-P(O)Ph)] with C^N^C = 2,6-diphenylpyridine and alkynylphosphine oxide ligands (L = no linker, Au1; phenyl, Au2; biphenyl, Au3; naphthyl, Au4; anthracenyl, Au5) were synthesized and fully characterized by spectroscopic methods and single crystal XRD analysis. The complexes obtained exhibit triplet (Au1-Au3) and dual (Au4, Au5) emissions in solution, in the solid phase and in the PMMA film, whose characteristics depend on the linker's nature of the alkynylphosphine oxide ligand. The description of electronic transitions responsible for energy absorption and emission in Au(III) complexes was made on the basis of a detailed analysis of the results of DFT calculations and has shown to involve ILCT, LLCT and MLCT transitions of singlet and triplet nature.

View Article and Find Full Text PDF

Elucidating the mechanism behind the significant changes in photoluminescence behavior after powder compression into a tablet.

Phys Chem Chem Phys

January 2025

Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.

Nonconventional luminogens have great potential for applications in fields like anti-counterfeiting encryption. But so far, the photoluminescence quantum yield (PLQY) of most of these powders is still relatively low and the persistent room temperature phosphorescence (p-RTP) emission is relatively weak. To improve their PLQY and p-RTP, pressing the powder into tablets has been preliminarily proven to be an effective method, but the specific mechanism has not been fully elucidated yet.

View Article and Find Full Text PDF

Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are a superfamily of transmembrane proteins that initiate signaling cascades through activation of its G protein upon association with its ligand. In all mammalian vision, rhodopsin is the GPCR responsible for the initiation of the phototransduction cascade. Within photoreceptors, rhodopsin is bound to its chromophore 11-cis-retinal and is activated through the light-sensitive isomerization of 11-cis-retinal to all-trans-retinal, which activates the transducin G protein, resulting in the phototransduction cascade.

View Article and Find Full Text PDF

Cardiac growth patterns and metabolism before and after birth in swine: Role of miR in proliferation, hypertrophy and metabolism.

J Mol Cell Cardiol Plus

September 2024

Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.

The adult mammalian heart is unable to undergo cardiac repair, limiting potential treatment options after cardiac damage. However, the fetal heart is capable of cardiac repair. In preparation for birth, cardiomyocytes (CMs) undergo major maturational changes that include exit from the cell cycle, hypertrophic growth, and mitochondrial maturation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!