Metal-organic cages (MOCs) have garnered significant attention due to their unique discrete structures, intrinsic porosity, designability, and tailorability. However, weak inter-cage interactions, such as van der Waals forces and hydrogen bonding can cause solid-state MOCs to lose structural integrity during desolvation, leading to the loss of porosity. In this work, a novel strategy to retain the permanent porosity of Cu-paddlewheel-based MOCs, enabling their use as heterogeneous catalysts is presented. Post-synthetic solvothermal treatments in non-coordinating solvents, mesitylene, and p-xylene, effectively preserve the packing structures of solvent-evacuated MOCs while preventing cage agglomeration. The resulting MOCs exhibit an exceptional N sorption capacity, with a high surface area (S = 1934 m g for MOP-23), which is among the highest reported for porous MOCs. Intriguingly, while the solvothermal treatment reduced Cu(II) to Cu(I) in the Cu-paddlewheel clusters, the MOCs with mixed-valenced Cu(I)/Cu(II) maintained their crystallinity and permanent porosity. The catalytic activities of these MOCs are successfully examined in copper(I)-catalyzed hydrative amide synthesis, highlighting the prospect of MOCs as versatile reaction platforms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202308393 | DOI Listing |
Anal Chim Acta
February 2025
Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, China. Electronic address:
Background: The metal organic cages (MOCs) are an emerging type of porous material that has attracted considerable research interest due to their unique properties, including good stability and well-defined intrinsic cavities. The chiral MOCs with porous structures have broad application prospects in enantiomeric recognition and separation. However, there are almost no relevant reports on chiral MOCs as chiral stationary phases (CSPs) for enantioseparation by high-performance liquid chromatography (HPLC).
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
Intensified host-guest electronic interplay within stable metal-organic cages (MOCs) presents great opportunities for applications in stimuli response and photocatalysis. Zr-MOCs represent a type of robust discrete hosts for such a design, but their host-guest chemistry in solution is hampered by the limited solubility. Here, by using pyridinium-derived cationic ligands with tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (BAr) as solubilizing counteranions, we report the preparation of soluble Zr-MOCs of different shapes (1-4) that are otherwise inaccessible through a conventional method.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Tailored design of organic linkers or metal nodes can introduce desirable functionalities into metal-organic cages (MOCs), significantly expanding their potential applications. In this study, we present a viable approach for engineering acyl-type metal nodes to create interior oxygen-rich sites within MOCs, enabling specific recognition of metal ions, including radioactive contaminants, while maintaining the structural integrity of the MOCs. A novel MOC featuring a uranyl-sealed calix[4]resorcinarene (C[4]R)-based multisite cavity, referred to as UOC, is synthesized as a prototype.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
Metal-organic cages (MOCs) have been considered as emerging zero-dimensional (0D) porous fillers to generate molecularly homogeneous MOC-based membrane materials. However, the discontinuous pore connectivity and low filler concentrations limit the improvement of membrane separation performance. Herein, we propose the dimension augmentation of MOCs in membranes using three-dimensional (3D) supramolecular MOC networks as filler materials in mixed matrix membranes (MMMs).
View Article and Find Full Text PDFJ Craniofac Surg
January 2025
Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina.
Background: Children with cleft lip ± palate (CL/P) may undergo nasoalveolar molding (NAM) before surgery to achieve arch alignment and tension-free closure, yet the endpoint of arch dimensions has not been defined.
Objective: To characterize the size and shape of infant palates using anatomic landmarks on magnetic resonance imaging in infants without CL/P.
Methods: Magnetic resonance imaging of infants without cleft palate younger than 3 months were reviewed and 13 measurements were taken to define palatal shape: distance between incisive foramen (IF) and incisors (IN), IF and middle of canines (MOC), between MOCs, between first molars (FM), 2 depth and 4 angle measurements.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!