V-based solid solution materials hold a significant position in the realm of hydrogen storage materials because of its high hydrogen storage capacity. However, the current dehydrogenation temperature of V-based solid solution exceeds 350 °C, making it challenging to fulfill the appliance under moderate conditions. Here advancements in the hydrogen storage properties and related mechanisms of TiVCrMn + x LiAlH (x = 0, 5, 8, 10 wt.%) composites is presented. According to the first principle calculation analysis, the inclusion of Al and Li atoms will lower the binding energy of hydride, thus enhancing the hydrogen absorption reaction and significantly decreasing the activation difficulty. Furthermore, based on crystal orbital Hamilton population (COHP) analysis, the strength of the V─H and Ti─H bonds after doping LiAlH are reduced, leading to a decrease of the hydrogen release activation energy (E) for the V-based solid solution material, thus the hydrogen release process is easier to carry out. Additionally, the structure of doped LiAlH exhibits an outstanding hydrogen release rate of 2.001 wt.% at 323 K and remarkable cycling stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202309609 | DOI Listing |
Small
January 2025
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
The scarcity of cost-effective and durable iridium-free anode electrocatalysts for the oxygen evolution reaction (OER) poses a significant challenge to the widespread application of the proton exchange membrane water electrolyzer (PEMWE). To address the electrochemical oxidation and dissolution issues of Ru-based electrocatalysts, an electron-donating modification strategy is developed to stabilize WRuO under harsh oxidative conditions. The optimized catalyst with a low Zirconium doping (Zr, 1 wt.
View Article and Find Full Text PDFSmall
January 2025
National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.
Electrochemical CO reduction (CORR) in membrane electrode assembly (MEA) represents a viable strategy for converting CO into value-added multi-carbon (C) compounds. Therefore, the microstructure of the catalyst layer (CL) affects local gas transport, charge conduction, and proton supply at three-phase interfaces, which is significantly determined by the solvent environment. However, the microenvironment of the CLs and the mechanism of the solvent effect on C selectivity remains elusive.
View Article and Find Full Text PDFChemphyschem
January 2025
Nanjing Tech University, College of Chemical Engineering, CHINA.
Recently, Beller and coworkers reported a study on the reversible hydrogenation of CO2 to formic acid using a Mn(I)-PN5P complex. In this paper, we performed DFT calculations to understand the mechanism for this reversible reaction occurring on the Mn-PN5P, Mn-PN3P, and Mn-PNP catalysts. Through investigating in detail two possible routes for CO2 hydrogenation to formic acid, we noticed that the production of formic acid is not thermodynamically favorable.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.. Electronic address:
The present study intended to investigate the properties of collagen peptide (CP)-astragaloside (AG) nanocomplexes (CPANs) improved oxidized hydroxypropyl starch (OHS)/chitosan (CS) (OC) film and to explore the preservation of chilled beef. The results indicated that AG significantly enhanced the stability, antioxidant capacity, and antibacterial properties of CP through mechanisms like static quenching and hydrophobic interactions. The incorporation of CPANs improved thickness, swellability, and water vapor blocking, UV-blocking and mechanical properties, antioxidant and antibacterial activity of OC film.
View Article and Find Full Text PDFLangmuir
January 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.
Nontraditional luminogens (NTLs) without large π-conjugated aromatic structures have attracted a great deal of attention in recent years. Developing NTLs with red-shifted and enhanced emissions remains a great challenge. In this work, we developed a NTL composed of three components, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!