Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Transmission intensity for mosquito-borne diseases are highly heterogenous and multi-factorial. Understanding risk factors associated to disease transmission allow the optimization of vector control. This study sets out to understand and compare the combined anthropogenic and environmental risk factors of four major mosquito-borne diseases, dengue, malaria, chikungunya and Japanese encephalitis in Thailand.
Methods: An integrated analysis of mosquito-borne diseases, meteorological and ambient air pollutants of 76 provinces of Thailand was conducted over 2003-2021. We explored the use of generalized linear models and generalized additive models to consider both linear and non-linear associations between meteorological factors, ambient air pollutants and mosquito-borne disease incidence. Different assumptions on spatio-temporal dependence and nonlinearity were considered through province-specific and panel models, as well as different spline functions. Disease-specific model evidence was assessed to select best-fit models for epidemiological inference downstream.
Results: Analyses indicated several findings which can be generally applied to all diseases explored: (1) higher AH above mean values was positively associated with disease case counts (2) higher total precipitation above mean values was positively associated with disease case counts (3) extremely high temperatures were negatively associated with disease case counts (4) higher SO2 and PM2.5 surface concentrations were negatively associated with disease case counts. However, the relationships between disease and RH, non-extreme temperatures and CO surface concentration were more mixed, with directions of associations changing across the different diseases considered.
Conclusions: This study found protective and enhancing effects of meteorological and ambient air pollutant factors on mosquito-borne diseases burdens in Thailand. Further studies should employ these factors to understand and predict risk factors associated with mosquito-borne disease transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10752508 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0011763 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!