SARS-CoV-2 infection elicits robust CD8 T-cell responses, yet the identity of the mechanisms playing dominant roles in initiating the virus-specific CD8 T-cell responses are largely unknown. In the present study, we interrogate the contribution of the cDC1 subset to SARS-CoV-2-specific CD8 T-cell immunity. For this purpose, we used a novel murine line which combines the SARS-CoV-2 susceptible K18-hACE2 transgenic and the Batf3 deficient mice which lack the cDC1 subset. We demonstrate that in the absence of cDC1, viral-specific CD8 T-cell responses were severely impaired both in the draining lymph node as well as in the lungs, during the effector phase of SARS-CoV-2 infection. Furthermore, SARS-CoV-2 specific memory CD8 T-cells in the lungs and spleens were also significantly impacted, whereas humoral responses, as well as CD4 T-cells were not affected. Additionally, we demonstrate that the absence of cDC1 subset, and the consequent impaired CD8 T-cell responses, resulted in significant increase in SARS-CoV-2 viral load in the lungs. The conclusions of the study were further independently corroborated in an additional COVID-19 murine model consisting infection with a mouse-adapted SARS-CoV-2 virus. These results underscore a specific role for Batf3-dependent DC in regulating SARS-CoV-2 specific CD8 T-cell responses and may contribute to future vaccine design and immunization strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10752548PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0294176PLOS

Publication Analysis

Top Keywords

cd8 t-cell
28
t-cell responses
20
sars-cov-2 infection
12
cdc1 subset
12
role batf3-dependent
8
cd8
8
sars-cov-2
8
infection sars-cov-2
8
demonstrate absence
8
absence cdc1
8

Similar Publications

The Role of YY1 in the Regulation of LAG-3 Expression in CD8 T Cells and Immune Evasion in Cancer: Therapeutic Implications.

Cancers (Basel)

December 2024

Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.

The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive to immune therapeutics. Such treatments resulted in significant clinical responses and the prolongation of survival in a subset of patients.

View Article and Find Full Text PDF

Pancreatic cancer is the third leading cause of cancer-related mortality in the United States, with rising incidence and mortality. The receptor for advanced glycation end products (RAGE) and its ligands significantly contribute to pancreatic cancer progression by enhancing cell proliferation, fostering treatment resistance, and promoting a pro-tumor microenvironment via activation of the nuclear factor-kappa B (NF-κB) signaling pathways. This study validated pathway activation in human pancreatic cancer and evaluated the therapeutic efficacy of TTP488 (Azeliragon), a small-molecule RAGE inhibitor, alone and in combination with radiation therapy (RT) in preclinical models of pancreatic cancer.

View Article and Find Full Text PDF

CD8+ and CD8- NK Cells and Immune Checkpoint Networks in Peripheral Blood During Healthy Pregnancy.

Int J Mol Sci

January 2025

Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary.

Pregnancy involves significant immunological changes to support fetal development while protecting the mother from infections. A growing body of evidence supports the importance of immune checkpoint pathways, especially at the maternal-fetal interface, although limited information is available about the peripheral expression of these molecules by CD8+ and CD8- NK cell subsets during the trimesters of pregnancy. Understanding the dynamics of these immune cells and their checkpoint pathways is crucial for elucidating their roles in pregnancy maintenance and potential complications.

View Article and Find Full Text PDF

Background: The use of immune checkpoint inhibitors (CPIs) has become a dominant regimen in modern cancer therapy, however immune resistance induced by tumor-associated macrophages (TAMs) with immune suppressive and evasion properties limits responses. Therefore, the rational design of immune modulators that can control the immune suppressive properties of TAMs and polarize them, as well as dendritic cells (DCs), toward a more proinflammatory phenotype is a principal objective in cancer immunotherapy.

Methods: Here, using a protein engineering approach to enhance cytokine residence in the tumor microenvironment, we examined combined stimulation of the myeloid compartment via tumor stroma-binding granulocyte-macrophage colony-stimulating factor (GM-CSF) to enhance responses in both DCs and T cells via stroma-binding interleukin-12 (IL-12).

View Article and Find Full Text PDF

Oncolytic vaccinia virus armed with anti-CD47 nanobody elicit potent antitumor effects on multiple tumor models via enhancing innate and adoptive immunity.

J Immunother Cancer

December 2024

Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China

Objective: Targeting CD47 for cancer immunotherapy has been studied in many clinical trials for the treatment of patients with advanced tumors. However, this therapeutic approach is often hampered by on-target side effects, physical barriers, and immunosuppressive tumor microenvironment (TME).

Methods: To improve therapeutic efficacy while minimizing toxicities, we engineered an oncolytic vaccinia virus (OVV) encoding an anti-CD47 nanobody (OVV-αCD47nb).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!