Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Forkhead box E1 (FoxE1) protein is a transcriptional regulator known to play a major role in the development of the thyroid gland. By performing sequence alignments, we detected a deletion in FoxE1, which occurred in the evolution of mammals, near the point of divergence of placental mammals. This deletion led to the loss of the majority of the Eh1 motif, which was important for interactions with transcriptional corepressors. To investigate a potential mechanism for this deletion, we analyzed replication through the deletion area in mammalian cells with two-dimensional gel electrophoresis, and in vitro, using a primer extension reaction. We demonstrated that the area of the deletion presented an obstacle for replication in both assays. The exact position of polymerization arrest in primer extension indicated that it was most likely caused by a quadruplex DNA structure. The quadruplex structure hypothesis is also consistent with the exact borders of the deletion. The exact roles of these evolutionary changes in FoxE1 family proteins are still to be determined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10752562 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296176 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!