Recent advances in top-down mass spectrometry strategies continue to improve the analysis of intact proteins. 193 nm ultraviolet photodissociation (UVPD) is one method well-suited for top-down analysis. UVPD is often performed using relatively low photon flux in order to limit multiple-generation dissociation of fragment ions and maximize sequence coverage. Consequently, a large portion of the precursor ion survives the UVPD process, dominates the spectrum, and may impede identification of fragment ions. Here, we explore the isolation of subpopulations of fragment ions lower and higher than the precursor ion after UVPD as a means to eliminate the impact of the surviving precursor ion on the detection of low abundance fragment ions. This gas-phase fractionation method improved sequence coverage harvested from fragment ions found in the / regions lower and higher than the precursor by an average factor of 1.3 and 2.3, respectively. Combining this gas-phase fractionation method with proton transfer charge reduction (PTCR) further increased the sequence coverage obtained from these / regions by another factor of 1.3 and 1.4, respectively. Implementing a post-UVPD fractionation + PTCR strategy with six fractionation events resulted in a sequence coverage of 75% for enolase, the highest reported for 193 nm UVPD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jasms.3c00351 | DOI Listing |
Anal Chem
January 2025
Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, North Carolina 28081, United States.
Double bond (C═C) position isomerism in unsaturated lipids can indicate abnormal lipid metabolism and pathological conditions. Novel chemical derivatization and mass spectrometry-based techniques are under continuing development to provide more accurate elucidation of lipid structure in finer structural detail. Here, we introduce a new ion chemistry for annotating lipid C═C positions, which is highly efficient for liquid chromatography-mass spectrometry-based lipidomics.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
January 2025
School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, China. Electronic address:
As an important chemical reagent, methoxy polyethylene glycol amine (mPEG-NH) is widely used in biomedical field. Unraveling the pharmacokinetic behavior of mPEG-NH polymers is essential for revealing the toxicity and efficiency of mPEG-NH related drug delivery systems. In this study, a simple analytical assay based on mass spectrometry (MS) was first established and validated for quantification of mPEG-NH in biological matrix.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy.
Trapped ion mobility spectrometry (TIMS) using parallel accumulation serial fragmentation (PASEF) is an advanced analytical technique that offers several advantages in mass spectrometry (MS)-based lipidomics. TIMS provides an additional dimension of separation to mass spectrometry and accurate collision cross-section (CCS) measurements for ions, aiding in the structural characterization of molecules. This is especially valuable in lipidomics for identifying and distinguishing isomeric or structurally similar compounds.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
January 2025
Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai 200063 China. Electronic address:
Introduction: Phencyclidine, a dissociative anesthetic with hallucinogenic effects, is commonly abused as a recreational drug. Phencyclidine analogs are compounds produced by substitutions of the phenyl and piperidine rings of phencyclidine. Illegal use of phencyclidine and its analogs has symptoms such as addiction, confusion, and increased tendencies toward violence.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University Yichang 443002, China College of Medicine and Health Sciences, China Three Gorges University Yichang 443002, China.
In this study, the chemical components of Panacis Japonici Rhizoma extract and absorbed components in rats were identified by ultra-high performance liquid chromatography-quadrupole exactive orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS). The separation was performed by gradient elution on Waters UPLC BEH C_(18) column(2.1 mm×100 mm, 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!