AI Article Synopsis

  • The study explores how photochemically generated oxidative organic radicals (POORs) in dissolved black carbon (DBC) differ from those in dissolved organic matter (DOM), showing DBC has higher one-electron reduction potentials.
  • POORs generation in DBC is positively correlated with dissolved oxygen levels, while low oxygen conditions actually enhance DBC levels, hindering POORs through back-electron reactions.
  • The research highlights POORs’ significant role in degrading emerging organic contaminants in sunlight, suggesting that DBC is more effective than DOM in this process, thus improving understanding of pollutant behavior in water systems.

Article Abstract

The photochemically generated oxidative organic radicals (POORs) in dissolved black carbon (DBC) was investigated and compared with that in dissolved organic matter (DOM). POORs generated in DBC solutions exhibited higher one-electron reduction potential values (1.38-1.56 V) than those in DOM solutions (1.22-1.38 V). We found that the photogeneration of POORs from DBC is enhanced with dissolved oxygen (DO) increasing, while the inhibition of POORs is observed in reference to DOM solution. The behavior of the one-electron reducing species (DBC/DOM) was employed to explain this phenomenon. The experimental results revealed that the DO concentration had a greater effect on DBC than on DOM. Low DO levels led to a substantial increase in the steady-state concentration of DBC, which quenched the POORs via back-electron reactions. Moreover, the contribution of POORs to the degradation of 19 emerging organic contaminants (EOCs) in sunlight-exposed DBC and DOM solutions was estimated. The findings indicate that POORs play an important role in the photodegradation of EOCs previously known to react with triplets, especially in DBC solutions. Compared to DOM solutions, POOR exhibits a lower but considerable contribution to EOC attenuation. This study enhances the understanding of pollutant fate in aquatic environments by highlighting the role of DBC in photochemical pollutant degradation and providing insights into pollutant transformation mechanisms involving POORs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.3c07216DOI Listing

Publication Analysis

Top Keywords

dom solutions
12
photochemically generated
8
generated oxidative
8
oxidative organic
8
organic radicals
8
dissolved black
8
black carbon
8
poors
8
dbc
8
dbc solutions
8

Similar Publications

Innovative absolute probability approach for coastal vulnerability assessment due to sea level rise: Application in Tagus Estuary, Portugal.

Sci Total Environ

December 2024

Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal. Electronic address:

In coastal urban areas highly susceptible to flooding, whether from sea level rise (SLR) or storms, it is crucial to assess the vulnerability and risks posed by extreme and frequent floods. Reliable estimates of extreme natural events' return periods rely on historical data or probabilistic models, requiring extensive and robust data. From climate-scenario-based or semi-empirical models, SLR projections are represented by a central estimate or the full domain cumulative density function (CDF), entailing uncertainties.

View Article and Find Full Text PDF

Nanoscale‑boron nitride positively alters rhizosphere microbial communities and subsequent cucumber (Cucumis sativa) growth: A metagenomic analysis.

Sci Total Environ

December 2024

Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

Boron (B) deficiency affects over 132 crop species globally, making effective B supplement crucial for enhancing agricultural yield and health. This study explores an innovative application of nanoscale boron nitride (nano-BN) as a sustainable solution for addressing B deficiency in crops. Cucumber seedlings were treated with different contents of nano-BN under greenhouse conditions and both B and N ionic treatments were set as comparisons.

View Article and Find Full Text PDF

Solution equilibrium and redox properties of metal complexes with 2-formylpyridine guanylhydrazone derivatives: Effect of morpholine and piperazine substitutions.

J Inorg Biochem

December 2024

Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary. Electronic address:

Schiff bases derived from aminoguanidine are extensively investigated for their structural versatility. The tridentate 2-formylpyridine guanylhydrazones act as analogues of 2-formyl or 2-acetylpyridine thiosemicarbazones, where the thioamide unit is replaced by the guanidyl group. Six derivatives of 2-formylpyridine guanylhydrazone were synthesized and their proton dissociation and complex formation processes with Cu(II), Fe(II) and Fe(III) ions were studied using pH-potentiometry, UV-visible, NMR and electron paramagnetic resonance spectroscopic methods.

View Article and Find Full Text PDF

Background: The increasing industrialization and hydrocarbon use have led to concerning soil contamination. Oil spills and improper disposal of oily waste pose threats to ecosystems and human health. The recovery of these environments is essential, but separating oily components from soil remains challenging.

View Article and Find Full Text PDF

Coupling of iron-carbon can form a mixotrophic denitrification and is regarded as a promising solution for purifying nitrate-rich agricultural runoff. However, its prevalence and efficacy of the synergistic augmentation of nitrogen elimination and net NO sinks remain crucial knowledge gaps in ecological ditches (eco-ditches). Here, we investigated the underlying variability mechanisms by implementing sponge iron (sFe)-coupled Iris hexagonus (IH)- or Myriophyllum aquaticum (MA)-derived biochar produced via microwave-assisted (MW) pyrolysis and conventional pyrolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!