Inspired by the enhanced water permeability of carbon nanotubes (CNTs), molecular dynamics simulations were performed to investigate the transport behavior through nanotubes made of boron nitride (BNNT), silicon carbide (SiC), and silicon nitride (SiN) alongside carbon nanotubes (which have different hydrophobic attributes) considering their implication for reverse osmosis (RO) membranes under different practical environments. According to our findings, not only do CNTs but also other kinds of nanotubes exhibit transition anomalies with increasing diameter. Utilizing the robust two-phase thermodynamic (2PT) methods, the current examinations shed light on thermodynamic origin of favorable water filling of these nanotubes. The results show that regardless of the nanotube material, the filling of water inside small nanopores ( < 10 Å) as well as within pores of diameter larger than 15 Å will always be favored by the entropy of filling. However, the entropic preference for filling nanotubes with a diameter of 10-15 Å depends on the constituent material. In particular, the enhancement in total entropy of confined water was mainly due to the increased rotational freedom of confined water molecules. The thermodynamic origin of water transport was correlated with the structural and fluidic behavior of water inside these nanotubes. The observed data for density, flow, structure correlation functions, water-water coordination, tetrahedral order parameter, hydrogen bonds, and density of states functions quantitatively support the observed entropy behavior. Of critical importance is that the present study demonstrates the effectiveness of RO filtration using nanotubes of boron nitride rather than carbon. Furthermore, it was found that one should avoid the use of silicon nanotubes unless filtration needs to be performed under harsh environments where nanotube of other materials cannot survive. Specifically, the results show that both the structural and dynamic properties of water confined in BNNTs are similar to those of CNT's, and for SiNT it is similar as SiC. Our results show that besides the nanotube material, the chirality index of the nanotube also plays a significant role in determining the structure, dynamics and thermodynamics of confined water molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.3c05979DOI Listing

Publication Analysis

Top Keywords

confined water
12
water
10
nanotubes
9
water transport
8
carbon nanotubes
8
nanotubes boron
8
boron nitride
8
thermodynamic origin
8
filling nanotubes
8
nanotube material
8

Similar Publications

Antimicrobial resistance (AMR) poses a global health challenge, particularly in maritime environments where unique conditions foster its emergence and spread. Characterized by confined spaces, high population density, and extensive global mobility, ships create a setting ripe for the development and dissemination of resistant pathogens. This review aims to analyse the contributing factors, epidemiological challenges, mitigation strategies specific to AMR on ships and to propose future research directions, bridging a significant gap in the literature.

View Article and Find Full Text PDF

The biomechanical, morphological and ecophysiological properties of plant seed/fruit structures are adaptations that support survival in unpredictable environments. High phenotypic variability of noxious and invasive weed species such as Raphanus raphanistrum (wild radish) allow diversification into new environmental niches. Dry indehiscent fruits (thick and lignified pericarp [fruit coat] enclosing seeds) have evolved many times independently.

View Article and Find Full Text PDF

Loess is extensively developed on both sides of the Longwu River, a tributary of the Yellow River, Tongren County, Qinghai Province. The engineering geological characteristics are complex, and landslide disasters are highly developed. Based on field geological surveys and physical property analysis of the loess in this area, this study analyzes the influence of water content, consolidation pressure, and soil disturbance on the dynamic characteristics of loess using GDS dynamic triaxial tests.

View Article and Find Full Text PDF

Chemistry for water treatment under nanoconfinement.

Water Res

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China.

The global freshwater crisis, exacerbated by escalating pollution, poses a significant threat to human health. Addressing this challenge required innovative strategies to develop highly efficient and process-adaptable materials for water decontamination. In this regard, nanomaterials with confinement structures have emerged as a promising solution, outperforming traditional nanomaterials in terms of efficiency, selectivity, stability, and process adaptability, thereby serving as an ideal platform for designing novel functional materials for sustainable water treatment.

View Article and Find Full Text PDF

Responsive Surfactant-Driven Morphology Transformation of Block Copolymer Microparticles.

Chemistry

January 2025

Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, State Key Laboratory of Materials Processing and Die & Mold Technology, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Block copolymer (BCP) microparticles, which exhibit rapid change of morphology and physicochemical property in response to external stimuli, represent a promising avenue for the development of programmable smart materials. Among the methods available for generating BCP microparticles with adjustable morphologies, the confined assembly of BCPs within emulsions has emerged as a particularly facile and versatile approach. This review provides a comprehensive overview of the role of responsive surfactants in modulating interfacial interactions at the oil-water interface, which facilitates controlled BCP microparticle morphology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!