Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Preventing metal corrosion has usually been associated with water-repellent coatings that inhibit the penetration of aggressive chloride ions. Contrary to this conventional wisdom, we engineered ultrathin superhydrophilic zwitterionic hydrogel brushes rooted in a nanoporous anodic aluminum oxide (AAO) substrate that effectively hampered the adsorption of hydrated chloride ions (Cl·HO) on the Al alloy surface. The hydrogel brush coating enhanced corrosion resistance by 3 orders of magnitude, with corrosion current density declining from 1.518 to 1.567 × 10 μA cm. Despite suffering from long-term salt-spaying tests, zwitterionic hydrogel brush coating retained 2 orders of magnitude of corrosion resistance. Direct Raman spectroscopic evidence manifested that interfacial water comprised both highly ordered hydrogen-bonded water and disordered water containing hydrated Cl ions. Under the hydration effect of zwitterionic hydrogel brushes, an interfacial disordered water structure dynamically transformed into a hydrogen-bonded water film. We correlated the structure and quantities of interfacial water with the corrosion current density and chloride adsorption. Hydrogen-bonded water improved by zwitterionic hydrogel brushes weakened the affinity and adsorption of hydrated Cl ion water on the oxide film, resulting in excellent corrosion protection. Therefore, employing localized hydration tuning strategies, these findings are anticipated to generally empower ordered interfacial water to enhance metal corrosion resistance through precise interfacial engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c13841 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!