A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultrathin Water-Responsive Zwitterionic Hydrogel Brush Coatings for Long-Term Corrosion Protection. | LitMetric

Ultrathin Water-Responsive Zwitterionic Hydrogel Brush Coatings for Long-Term Corrosion Protection.

ACS Appl Mater Interfaces

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.

Published: January 2024

Preventing metal corrosion has usually been associated with water-repellent coatings that inhibit the penetration of aggressive chloride ions. Contrary to this conventional wisdom, we engineered ultrathin superhydrophilic zwitterionic hydrogel brushes rooted in a nanoporous anodic aluminum oxide (AAO) substrate that effectively hampered the adsorption of hydrated chloride ions (Cl·HO) on the Al alloy surface. The hydrogel brush coating enhanced corrosion resistance by 3 orders of magnitude, with corrosion current density declining from 1.518 to 1.567 × 10 μA cm. Despite suffering from long-term salt-spaying tests, zwitterionic hydrogel brush coating retained 2 orders of magnitude of corrosion resistance. Direct Raman spectroscopic evidence manifested that interfacial water comprised both highly ordered hydrogen-bonded water and disordered water containing hydrated Cl ions. Under the hydration effect of zwitterionic hydrogel brushes, an interfacial disordered water structure dynamically transformed into a hydrogen-bonded water film. We correlated the structure and quantities of interfacial water with the corrosion current density and chloride adsorption. Hydrogen-bonded water improved by zwitterionic hydrogel brushes weakened the affinity and adsorption of hydrated Cl ion water on the oxide film, resulting in excellent corrosion protection. Therefore, employing localized hydration tuning strategies, these findings are anticipated to generally empower ordered interfacial water to enhance metal corrosion resistance through precise interfacial engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c13841DOI Listing

Publication Analysis

Top Keywords

zwitterionic hydrogel
20
hydrogel brush
12
hydrogel brushes
12
corrosion resistance
12
interfacial water
12
hydrogen-bonded water
12
water
9
corrosion
8
corrosion protection
8
metal corrosion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!