RNA editing is a crucial post-transcriptional modification process in plant organellar RNA metabolism. rRNA removal-based total RNA-seq is one of the most common methods to study this event. However, the lack of commercial kits to remove rRNAs limits the usage of this method, especially for non-model plant species. DSN-seq is a transcriptome sequencing method utilizing duplex-specific nuclease (DSN) to degrade highly abundant cDNA species especially those from rRNAs while keeping the robustness of transcript levels of the majority of other mRNAs, and has not been applied to study RNA editing in plants before. In this study, we evaluated the capability of DSN-seq to reduce rRNA content and profile organellar RNA editing events in plants, as well we used commercial Ribo-off-seq and standard mRNA-seq as comparisons. Our results demonstrated that DSN-seq efficiently reduced rRNA content and enriched organellar transcriptomes in rice. With high sensitivity to RNA editing events, DSN-seq and Ribo-off-seq provided a more complete and accurate RNA editing profile of rice, which was further validated by Sanger sequencing. Furthermore, DSN-seq also demonstrated efficient organellar transcriptome enrichment and high sensitivity for profiling RNA editing events in Arabidopsis thaliana. Our study highlights the capability of rRNA removal-based total RNA-seq for profiling RNA editing events in plant organellar transcriptomes and also suggests DSN-seq as a widely accessible RNA editing profiling method for various plant species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.16607 | DOI Listing |
Mol Ther
January 2025
Department of Biology, Concordia University, 7141 Sherbrooke St. W H4B 1R6, Montreal, Canada; Department of Physics, Concordia University, 7141 Sherbrooke St. W H4B 1R6, Montreal, Canada. Electronic address:
CRISPR-Cas9 ribonucleoproteins (RNPs) have been heavily considered for gene therapy due to their high on-target efficiency, rapid activity and lack of insertional mutagenesis relative to other CRISPR-Cas9 delivery formats. Genetic diseases such as hypertrophic cardiomyopathy currently lack effective treatment strategies and are prime targets for CRISPR-Cas9 gene editing technology. However, current in-vivo delivery strategies for Cas9 pose risks of unwanted immunogenic responses.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
Prime editing (PE) is a CRISPR-based tool for genome engineering that can be applied to generate human induced pluripotent stem cell (hiPSC)-based disease models. PE technology safely introduces point mutations, small insertions, and deletions (indels) into the genome. It uses a Cas9-nickase (nCas9) fused to a reverse transcriptase (RT) as an editor and a PE guide RNA (pegRNA), which introduces the desired edit with great precision without creating double-strand breaks (DSBs).
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China.
Background: Glioblastoma multiforme (GBM) is a highly aggressive brain tumor, characterized by its poor prognosis. Glycolipid metabolism is strongly associated with GBM development and malignant behavior. However, the precise functions of snoRNAs and ADARs in glycolipid metabolism within GBM cells remain elusive.
View Article and Find Full Text PDFGenes Dev
January 2025
Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA;
Hepatocyte polyploidy and maturity are critical to acquiring specialized liver functions. Multiple intracellular and extracellular factors influence ploidy, but how they cooperate temporally to steer liver polyploidization and maturation or how post-transcriptional mechanisms integrate into these paradigms is unknown. Here, we identified an important regulatory hierarchy in which postnatal activation of epithelial splicing regulatory protein 2 (ESRP2) stimulates processing of liver-specific microRNA () to facilitate polyploidization, maturation, and functional competence of hepatocytes.
View Article and Find Full Text PDFCancer Chemother Pharmacol
January 2025
Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
Purpose: Ovarian clear cell carcinoma is a highly malignant gynecological tumor characterized by a high rate of chemotherapy resistance and poor prognosis. The PI3K/AKT/mTOR pathway is well-known to be closely related to the progression of various malignancies, and recent studies have indicated that this pathway may play a critical role in the progression and worsening of OCCC.
Methods: In this study, we investigated the combined effects of WX390, a dual inhibitor of PI3K/mTOR, and cisplatin on OCCC through both in vitro and in vivo experiments to further elucidate their therapeutic effects.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!