Background: Cerebral microbleeds (CMB) are indicators of severe cerebral small vessel disease (CSVD) that can be identified through hemosiderin-sensitive sequences in MRI. Specifically, quantitative susceptibility mapping (QSM) and deep learning were applied to detect CMBs in MRI.
Purpose: To automatically detect CMB on QSM, we proposed a two-stage deep learning pipeline.
Study Type: Retrospective.
Subjects: A total number of 1843 CMBs from 393 patients (69 ± 12) with cerebral small vessel disease were included in this study. Seventy-eight subjects (70 ± 13) were used as external testing.
Field Strength/sequence: 3 T/QSM.
Assessment: The proposed pipeline consisted of two stages. In stage I, 2.5D fast radial symmetry transform (FRST) algorithm along with a one-layer convolutional network was used to identify CMB candidate regions in QSM images. In stage II, the V-Net was utilized to reduce false positives. The V-Net was trained using CMB and non CMB labels, which allowed for high-level feature extraction and differentiation between CMBs and CMB mimics like vessels. The location of CMB was assessed according to the microbleeds anatomical rating scale (MARS) system.
Statistical Tests: The sensitivity and positive predicative value (PPV) were reported to evaluate the performance of the model. The number of false positive per subject was presented.
Results: Our pipeline demonstrated high sensitivities of up to 94.9% at stage I and 93.5% at stage II. The overall sensitivity was 88.9%, and the false positive rate per subject was 2.87. With respect to MARS, sensitivities of above 85% were observed for nine different brain regions.
Data Conclusion: We have presented a deep learning pipeline for detecting CMB in the CSVD cohort, along with a semi-automated MARS scoring system using the proposed method. Our results demonstrated the successful application of deep learning for CMB detection on QSM and outperformed previous handcrafted methods.
Level Of Evidence: 2 TECHNICAL EFFICACY: Stage 2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmri.29198 | DOI Listing |
Adv Sci (Weinh)
January 2025
DP Technology, Beijing, 100080, China.
Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.
View Article and Find Full Text PDFSci Rep
January 2025
North Carolina School of Science and Mathematics, Durham, NC, 27705, USA.
Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.
View Article and Find Full Text PDFNPJ Digit Med
January 2025
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs).
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer and Data Science, Minjiang University, Fuzhou, 350018, China.
This study presents a novel approach to identifying meters and their pointers in modern industrial scenarios using deep learning. We developed a neural network model that can detect gauges and one or more of their pointers on low-quality images. We use an encoder network, jump connections, and a modified Convolutional Block Attention Module (CBAM) to detect gauge panels and pointer keypoints in images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!