Hypothalamic Thyroid Hormone Receptor α1 Signaling Controls Body Temperature.

Thyroid

Institut für Endokrinologie und Diabetes, AG Molekulare Endokrinologie, Universität zu Lübeck/Universitätsklinikum Schleswig-Holstein, Center of Brain, Behavior and Metabolism (CBBM), Lübeck, Germany.

Published: February 2024

AI Article Synopsis

  • Thyroid hormones play a crucial role in regulating body temperature and energy metabolism, with medical conditions like hyperthyroidism and hypothyroidism directly affecting these processes.
  • Recent research highlights the roles of specific thyroid hormone receptors, particularly TRα1 and TRβ, in body temperature regulation, although the exact functions and brain areas involved are still unclear.
  • Experiments using mutant TRα1 mice and TRβ knockouts showed that TRα1 is vital for maintaining body temperature, with T3 treatment being effective in normalizing temperature in mutant mice, indicating it's crucial for setting the central temperature in the hypothalamus.

Article Abstract

The importance of thyroid hormones (THs) for peripheral body temperature regulation has been long recognized, as medical conditions such as hyper- and hypothyroidism lead to alterations in body temperature and energy metabolism. In the past decade, the brain actions of THs and their respective nuclear receptors, thyroid hormone receptor α1 (TRα1) and thyroid hormone receptor beta (TRβ), coordinating body temperature regulation have moved into focus. However, the exact roles of the individual TR isoforms and their precise neuroanatomical substrates remain poorly understood. Here we used mice expressing a mutant TRα1 (TRα1+m) as well as TRβ knockouts to study body temperature regulation using radiotelemetry in conscious and freely moving animals at different ambient temperatures, including their response to oral 3,3',5-triiodothyronine (T3) treatment. Subsequently, we tested the effects of a dominant-negative TRα1 on body temperature after adeno-associated virus (AAV)-mediated expression in the hypothalamus, a region known to be involved in thermoregulation. While TRβ seems to play a negligible role in body temperature regulation, TRα1+m mice had lower body temperature, which was surprisingly not entirely normalized at 30°C, where defects in facultative thermogenesis or tail heat loss are eliminated as confounding factors. Only oral T3 treatment fully normalized the body temperature profile of TRα1+m mice, suggesting that the mutant TRα1 confers an altered central temperature set point in these mice. When we tested this hypothesis more directly by expressing the dominant-negative TRα1 selectively in the hypothalamus via AAV transfection, we observed a similarly reduced body temperature at room temperature and 30°C. Our data suggest that TRα1 signaling in the hypothalamus is important for maintaining body temperature. However, further studies are needed to dissect the precise neuroanatomical substrates and the downstream pathways mediating this effect.

Download full-text PDF

Source
http://dx.doi.org/10.1089/thy.2023.0513DOI Listing

Publication Analysis

Top Keywords

body temperature
44
temperature regulation
16
temperature
13
thyroid hormone
12
hormone receptor
12
body
11
receptor α1
8
precise neuroanatomical
8
neuroanatomical substrates
8
mutant trα1
8

Similar Publications

Objectives: The aim of the study was to evaluate the association between triage body temperature (BT) and outcome in cats presenting to the emergency department (ED).

Methods: A retrospective observational study was conducted on cats presented to the ED. BT, clinical diagnosis and outcome were recorded.

View Article and Find Full Text PDF

Impact of hyper- and hypothermia on cellular and whole-body physiology.

J Intensive Care

January 2025

Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA.

The incidence of heat-related illnesses and heatstroke continues to rise amidst global warming. Hyperthermia triggers inflammation, coagulation, and progressive multiorgan dysfunction, and, at levels above 40 °C, can even lead to cell death. Blood cells, particularly granulocytes and platelets, are highly sensitive to heat, which promotes proinflammatory and procoagulant changes.

View Article and Find Full Text PDF

Absence of MCJ/DnaJC15 promotes brown adipose tissue thermogenesis.

Nat Commun

January 2025

Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.

Obesity poses a global health challenge, demanding a deeper understanding of adipose tissue (AT) and its mitochondria. This study describes the role of the mitochondrial protein Methylation-controlled J protein (MCJ/DnaJC15) in orchestrating brown adipose tissue (BAT) thermogenesis. Here we show how MCJ expression decreases during obesity, as evident in human and mouse adipose tissue samples.

View Article and Find Full Text PDF

Menstrual cycle effects on thermoregulation while exercising in the heat.

J Therm Biol

January 2025

School of Integrative Physiology and Athletic Training, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA. Electronic address:

Women may be challenged to maintain thermoregulation due to hormonal changes associated with the menstrual cycle. The purpose of this study was to assess the effect of the menstrual cycle phase on core temperature, hydration status, and perceived exertion while exercising under uncompensable heat gain. Eleven eumenorrheic women (24.

View Article and Find Full Text PDF

Passive heating in sport: Context specific benefits, detriments, and considerations.

Appl Physiol Nutr Metab

January 2025

Coventry University, Centre for Sport Exercise and Life Sciences, Coventry, Warwickshire, United Kingdom of Great Britain and Northern Ireland;

Exercise and passive heating share some acute physiological responses. These include increases in body temperature, sweat rate, blood flow, heart rate, and redistribution of plasma and blood volume. These responses can vary depending on the heating modality or dose (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!