Chemotherapy-induced neuropathic pain (CINP) is one of the most prominent and incapacitating complication associated with chemotherapeutic regimens. The exact mechanisms underlying CINP are not fully understood yet, which hampers the development of effective therapeutics. The current study has been designed to investigate the effect of bergenin on CINP and dissect the underlying cellular and molecular mechanisms. Behavioural responsiveness assays were conducted in rats before and after CINP induction and at different time points post-bergenin treatment. We also measured alterations in tight junction proteins, pro-inflammatory cytokines, microglia activity, transient receptor potential (TRP) channels (TRPV1, TRPA1 and TRPM8) and N-methyl-D-aspartate receptor subtype 2 (NR2B) in dorsal root ganglion (DRG) and spinal tissues of neuropathic rats. Bergenin treatment leads to a significant and dose-dependent reduction in evoked and spontaneous ongoing pain without causing central side effects in neuropathic rats. Furthermore, treatment with bergenin and gabapentin did not affect the baseline pain threshold in healthy, non-chemotherapy-treated rats, as evaluated through tail-flick and tail-clip assays. Chemotherapy administration leads to a significant activation of TRP channels, concurrent with microglial activation, disruption of spinal cord tight junction proteins, and subsequent infiltration of pro-inflammatory cytokines, as well as NR2B activation. Notably, bergenin treatment effectively reversed all of these alterations, with the exception of TRPM8, in both the DRG and spinal cord of neuropathic rats. Findings from the present study suggests that bergenin mitigates neuropathic pain by modulating the TRPA1/TRPV1/NR2B signalling and presents a promising therapeutic avenue for the treatment of chemotherapy-induced neuropathic pain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2023.111100 | DOI Listing |
J Neurosurg
January 2025
1Department of Neurosurgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation.
Objective: The purpose of this study was to present a newly designed 3D-printed personalized model (3D PPM) of a radiofrequency needle guide with a maxillary fixation for gasserian ganglion (GG) puncture.
Methods: Implementation of 3D CT-guided radiofrequency therapy of the GG with and without use of 3D PPM was analyzed. The following parameters were assessed: radiation time, dose area product, air kerma reference point, pain severity during the puncture needle insertion, prosopalgia regression degree (according to visual analog scale) and the severity of facial numbness (according to the Barrow Neurological Institute scale) in the early postoperative period, and postpuncture complications.
PLoS One
January 2025
Department of Pain Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
Background: Lowering barometric pressure (LP) can exacerbate neuropathic pain. However, animal studies in this field are limited to a few conditions. Furthermore, although sympathetic involvement has been reported as a possible mechanism, whether the sympathetic nervous system is involved in the hypothalamic-pituitary-adrenal (HPA) axis remains unknown.
View Article and Find Full Text PDFCureus
January 2025
Research, Clarity Science LLC, Narragansett, USA.
The recent identification of Piezo ion channels demonstrating a mechano-sensitive impact on neurons revealed distinct Piezo-1 and 2 types. While Piezo-1 predominates in neurons linked to non-sensory stimulation, such as pressure in blood vessels, Piezo-2 predominates in neurons linked to sensory stimulation, such as touch. Piezo-1 and 2 have a major bidirectional impact on transient receptor potential (TRP) ion channels, and TRPs also impact neurotransmitter release.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Peripheral nerve injury (PNI)-induced neuropathic pain (NP) is a severe disease with high prevalence in clinics. Gene reprogramming and tissue remodeling in the dorsal root ganglia (DRG) and spinal cord (SC) drive the development and maintenance of neuropathic pain (NP). However, our understanding of the NP-associated spatial molecular processing landscape of SC and the non-synaptic interactions between DRG neurons and SC cells remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!