Dimerization of the CNNM extracellular domain.

Protein Sci

Department of Biochemistry & Centre de recherche en biologie structurale, McGill University, Montreal, Canada.

Published: February 2024

AI Article Synopsis

  • Cystathionine- -synthase (CBS)-pair domain transporters (CNNMs) are important for regulating magnesium levels in the body by transporting magnesium ions and affecting a specific ion channel (TRPM7).
  • The study presents the crystal structure of the extracellular part of tapeworm CNNM4, revealing it forms a dimer with specific molecular structures and sites for sugar molecules.
  • Mutations in the extracellular domain of human CNNM4 hinder its dimerization, and a similar mutation in mouse CNNM2 negatively affects its ability to transport magnesium in cells.

Article Abstract

Cystathionine- -synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) are an evolutionarily conserved family of magnesium transporters. They mediate magnesium homeostasis directly by transport of Mg ions and indirectly by regulation of the transient receptor potential ion channel subfamily M member 7 (TRPM7). Here, we report the crystal structure of the extracellular domain of tapeworm CNNM4. The domain forms a dimer of immunoglobulin-like (Ig-like) folds with electron density observed for three glycosylation sites. Analytical ultracentrifugation confirms that mutations in the extracellular domain of human CNNM4 prevent its dimerization. An analogous mutation in mouse CNNM2 impairs its activity in a cellular assay of Mg transport.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804811PMC
http://dx.doi.org/10.1002/pro.4860DOI Listing

Publication Analysis

Top Keywords

extracellular domain
12
domain
5
dimerization cnnm
4
cnnm extracellular
4
domain cystathionine-
4
cystathionine- -synthase
4
-synthase cbs-pair
4
cbs-pair domain
4
domain divalent
4
divalent metal
4

Similar Publications

Mapping O- and N-Glycosylation in Transmembrane and Interface Regions of Proteins: Insights from a Database Search Study.

Int J Mol Sci

January 2025

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independenței Str., 050095 Bucharest, Romania.

Glycosylation is a critical post-translational modification that influences protein folding, stability and function. While extensively studied in extracellular and intracellular regions, glycosylation within transmembrane (TM) regions and at membrane interfaces remains poorly understood. This study aimed to map O- and N-glycosylation sites in these regions using a comprehensive database search and structural validation where possible.

View Article and Find Full Text PDF

Biogenesis of Extracellular Vesicles (EVs) and the Potential Use of Embryo-Derived EVs in Medically Assisted Reproduction.

Int J Mol Sci

December 2024

Department of Reproductive Medicine and Gynecological Endocrinology, University Medical Centre Maribor, 2000 Maribor, Slovenia.

Extracellular vesicles (EVs) are lipid bilayer-bound particles released from cells that cannot replicate on their own, play a crucial role in intercellular communication, and are implicated in various physiological and pathological processes. Within the domain of embryo culture media research, extensive studies have been conducted to evaluate embryo viability by analyzing spent culture medium. Advanced methodologies such as metabolomic profiling, proteomic and genomic analyses, transcriptomic profiling, non-coding RNA assessments, and oxidative status measurements have been employed to further understand the molecular characteristics of embryos and improve selection criteria for successful implantation.

View Article and Find Full Text PDF

Mitigating the release of extracellular antimicrobial resistance genes (exARGs) from wastewater treatment plants (WWTPs) is crucial for preventing the spread of antimicrobial resistance from human domains into the environment. This study aimed to evaluate the applicability of intI1 as a performance indicator for securing the removal of exARGs at WWTPs. We investigated the reduction of exARGs and intI1 in a full-scale WWTP, where identical wastewater was treated using conventional activated sludge (CAS) and membrane bioreactor (MBR) systems.

View Article and Find Full Text PDF

Computational-aided rational mutation design of pertuzumab to overcome active HER2 mutation S310F through antibody-drug conjugates.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) maintains brain homeostasis but also prevents most drugs from entering the brain. No paracellular diffusion of solutes is allowed because of tight junctions that are made impermeable by the expression of claudin5 (CLDN5) by brain endothelial cells. The possibility of regulating the BBB permeability in a transient and reversible fashion is in strong demand for the pharmacological treatment of brain diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!