Programming Deformations of 3D Microstructures: Opportunities Enabled by Magnetic Alignment of Liquid Crystalline Elastomers.

Acc Mater Res

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.

Published: December 2023

Synthetic structures that undergo controlled movement are crucial building blocks for developing new technologies applicable to robotics, healthcare, and sustainable self-regulated materials. Yet, programming motion is nontrivial, and particularly at the microscale it remains a fundamental challenge. At the macroscale, movement can be controlled by conventional electric, pneumatic, or combustion-based machinery. At the nanoscale, chemistry has taken strides in enabling molecularly fueled movement. Yet in between, at the microscale, top-down fabrication becomes cumbersome and expensive, while bottom-up chemical self-assembly and amplified molecular motion does not reach the necessary sophistication. Hence, new approaches that converge top-down and bottom-up methods and enable motional complexity at the microscale are urgently needed. Synthetic anisotropic materials (e.g., liquid crystalline elastomers, LCEs) with encoded molecular anisotropy that are shaped into arbitrary geometries by top-down fabrication promise new opportunities to implement controlled actuation at the microscale. In such materials, motional complexity is directly linked to the built-in molecular anisotropy that can be "activated" by external stimuli. So far, encoding the desired patterns of molecular directionality has relied mostly on either mechanical or surface alignment techniques, which do not allow the decoupling of molecular and geometric features, severely restricting achievable material shapes and thus limiting attainable actuation patterns, unless complex multimaterial constructs are fabricated. Electromagnetic fields have recently emerged as possible alternatives to provide 3D control over local anisotropy, independent of the geometry of a given 3D object. The combination of magnetic alignment and soft lithography, in particular, provides a powerful platform for the rapid, practical, and facile production of microscale soft actuators with field-defined local anisotropy. Recent work has established the feasibility of this approach with low magnetic field strengths (in the lower mT range) and comparably simple setups used for the fabrication of the microactuators, in which magnetic fields can be engineered through arrangement of permanent magnets. This workflow gives access to microstructures with unusual spatial patterning of molecular alignment and has enabled a multitude of nontrivial deformation types that would not be possible to program by any other means at the micron scale. A range of "activating" stimuli can be used to put these structures in motion, and the type of the trigger plays a key role too: directional and dynamic stimuli (such as light) make it possible to activate the patterned anisotropic material locally and transiently, which enables one to achieve and further program motional complexity and communication in microactuators. In this Account, we will discuss recent advances in magnetic alignment of molecular anisotropy and its use in soft lithography and related fabrication approaches to create LCE microactuators. We will examine how design choices-from the molecular to the fabrication and the operational levels-control and define the achievable LCE deformations. We then address the role of stimuli in realizing the motional complexity and how one can engineer feedback within and communication between microactuator arrays fabricated by soft lithography. Overall, we outline emerging strategies that make possible a completely new approach to designing for desired sets of motions of active, microscale objects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10749463PMC
http://dx.doi.org/10.1021/accountsmr.3c00101DOI Listing

Publication Analysis

Top Keywords

motional complexity
16
magnetic alignment
12
molecular anisotropy
12
soft lithography
12
liquid crystalline
8
crystalline elastomers
8
top-down fabrication
8
molecular
8
local anisotropy
8
microscale
6

Similar Publications

Geometrically modulated contact forces enable hula hoop levitation.

Proc Natl Acad Sci U S A

January 2025

Applied Mathematics Laboratory, Courant Institute of Mathematical Sciences, Department of Mathematics, New York University, New York, NY 10012.

Mechanical systems with moving points of contact-including rolling, sliding, and impacts-are common in engineering applications and everyday experiences. The challenges in analyzing such systems are compounded when an object dynamically explores the complex surface shape of a moving structure, as arises in familiar but poorly understood contexts such as hula hooping. We study this activity as a unique form of mechanical levitation against gravity and identify the conditions required for the stable suspension of an object rolling around a gyrating body.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.

View Article and Find Full Text PDF

Analysis of the internal motions of thermoresponsive polymers and single chain nanoparticles.

Soft Matter

January 2025

Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44122, USA.

Data-driven techniques, such as proper orthogonal decomposition (POD) and uniform manifold approximation & projection (UMAP), are powerful methods for understanding polymer behavior in complex systems that extend beyond ideal conditions. They are based on the principle that low-dimensional behaviors are often embedded within the structure and dynamics of complex systems. Here, the internal motions of a thermoresponsive, LCST polymer are investigated for two cases: (1) the coil-to-globule transition that occurs as the system is heated above its critical temperature and (2) intramolecularly crosslinked, single chain nanoparticles (SCNPs) both above and below the critical temperature ().

View Article and Find Full Text PDF

The diffusion motions of individual polymer aggregates in disordered porous media were visualized using the single-particle tracking (SPT) method because the motions inside porous media play important roles in various fields of science and engineering. In the aggregates diffused on the surfaces of pores, continuous adsorption and desorption processes were observed. The relationship between the size of the aggregates and pore size was analysed based on diffusion coefficients, moment scaling spectrum (MSS) slope analysis, and diffusion anisotropy analysis.

View Article and Find Full Text PDF

Light-driven micromotors with multiple motion modes offer significantly greater application potential than single-mode micromotors. However, achieving such versatility often requires complex structural designs and precise light focusing on specific micromotor regions, presenting challenges for dynamic operations and microscale precisions. This study introduces programmable assemblies of anisotropic micromotors driven by the photothermal Marangoni effect, produced in bulk microfluidic technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!