Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The patterning of excitatory cortical neurons from human pluripotent stem cells (hPSCs) is a desired technique for the study of neurodevelopmental disorders, as neurons can be created and compared from control hPSC lines, hPSC lines generated from patients, and CRISPR-modified hPSC lines. Therefore, this technique allows for the examination of disease phenotypes and assists in the development of potential new therapeutics for neurodevelopmental disorders. Many protocols, however, are optimized for use with specific hPSC lines or within a single laboratory, and they often provide insufficient guidance on how to identify positive stages in the differentiation or how to troubleshoot. Here, we present an efficient and reproducible directed differentiation protocol to generate two-dimensional cultures of hPSC-derived excitatory cortical neurons without intermediary embryoid body formation. This novel protocol is supported by our data generated with five independent hPSC lines and in two independent laboratories. Importantly, as neuronal differentiations follow a long time course to reach maturity, we provide extensive guidance regarding morphological and flow cytometry checkpoints allowing for early indications of successful differentiation. We also include extensive troubleshooting tips and support protocols to assist the operator. The goal of this protocol is to assist others in the successful differentiation of excitatory cortical neurons from hPSCs. © 2023 Wiley Periodicals LLC. Basic Protocol: Directed differentiation of hPSCs into excitatory cortical neurons Support Protocol 1: Harvesting and fixing cells for flow cytometry analyses Support Protocol 2: Performing flow cytometry analyses Support Protocol 3: Thawing NPCs from a cryopreserved stock Alternate Protocol 1: Continuing Expansion of NPCs Alternate Protocol 2: Treatment of neurons with Ara-C to ablate radial glia Support Protocol 4: Experimental methods for validation of excitatory cortical neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753927 | PMC |
http://dx.doi.org/10.1002/cpz1.948 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!