Endometriosis (EMS) is a chronic inflammatory disorder of high incidence that causes serious reproductive consequences. High estrogen production is a consistently observed endocrine feature of EMS. The present study aims to probe the molecular mechanism of G protein-coupled estrogen receptor 1 (GPER) in the invasion and migration of ectopic endometrial stromal cells (Ect-ESCs) and provides a new rationale for EMS treatment. Eutopic and ectopic endometrial tissues were collected from 41 EMS patients, and primary ESCs were separated. GPER, miR-16-5p, and miR-103a-3p levels in cells and tissues were determined by qRT-PCR or Western blot assay. Cell viability, proliferation, invasion, and migration were evaluated by CCK-8, colony formation, and Transwell assays. The upstream miRNAs of GPER were predicted by databases, and dual-luciferase assay was performed to validate the binding of miR-16-5p and miR-103a-3p to GPER 3'UTR. GPER was highly expressed in EMS tissues and Ect-ESCs. Inhibition of GPER mitigated the proliferation, invasion, and migration of Ect-ESCs. GPER was regulated by miR-16-5p and miR-103a-3p. Overexpression of miR-16-5p and miR-103a-3p negatively regulated GPER expression and inhibited the invasion and migration of Ect-ESC. In conclusion, GPER promoted the invasion and migration of Ect-ESCs, which can be reversed by upstream miR-16-5p and miR-103a-3p.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03630242.2023.2296522DOI Listing

Publication Analysis

Top Keywords

invasion migration
24
mir-16-5p mir-103a-3p
20
ectopic endometrial
12
gper
10
gper invasion
8
migration ectopic
8
endometrial stromal
8
stromal cells
8
proliferation invasion
8
migration ect-escs
8

Similar Publications

Case: A 34-year-old man presented at our hospital with knee collapse. Magnetic resonance imaging (MRI) revealed posterior compression of the dural sac by a lumbar epidural lesion; however, a diagnosis could not be reached. Gadolinium (Gd)-enhanced 3-dimensional MRI (3D-MRI) clearly delineated the morphology, enabling us to make a preoperative diagnosis of posterior epidural migration of the lumbar disc fragment (PEMLDF).

View Article and Find Full Text PDF

Background: Breast cancer (BC) is a global challenge that affects a large portion of individuals, especially women. It has been suggested that microparticles (MPs) can be used as a diagnostic, prognostic, or therapeutic biomarker in various diseases. Moreover, MPs are known to elevate in cancer cases.

View Article and Find Full Text PDF

LINC01224 promotes the Warburg effect in gastric cancer by activating the miR-486-5p/PI3K axis.

In Vitro Cell Dev Biol Anim

January 2025

Gastroenterology Section, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China.

The Warburg effect, a common feature of solid tumors, rewires the metabolism and promotes growth, survival, proliferation, and long-term maintenance in gastric cancer (GC). We performed in vitro and in vivo studies of the pathogenesis of GC to investigate the effects and mechanism of LINC01224 in this cancer. qRT-PCR was used to measure the expression of LINC01224 or miR-486-5p in GC cells, and the expression of LINC01224 in GC tissues by FISH (Fluorescence in situ hybridization) analysis was evaluated.

View Article and Find Full Text PDF

HSP27/IL-6 axis promotes OSCC chemoresistance, invasion and migration by orchestrating macrophages via a positive feedback loop.

Cell Biol Toxicol

January 2025

Department of Oral Anatomy and Physiology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Jilin University, Changchun, 130021, China.

Novel strategies to disrupt tumor progression have emerged from studying the interactions between tumor cells and tumor-associated macrophages (TAMs). However, the molecular mechanisms of interactions between tumor cells and TAMs underlying oral squamous cell carcinoma (OSCC) progression have not been fully elucidated. This study explored the molecular mechanism of the HSP27/IL-6 axis in OSCC chemoresistance, invasion, and migration.

View Article and Find Full Text PDF

The chick embryo chorioallantoic membrane (CAM) tumor model is a valuable preclinical model for studying the tumor-colonizing process of serovar Typhimurium. It offers advantages such as cost-effectiveness, rapid turnaround, reduced engraftment issues, and ease of observation. In this study, we explored and validated the applicability of the partially immune-deficient CAM tumor model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!