Guanine nucleotide-binding protein-like 3-like (GNL3L), a conserved GTP-binding nucleolar protein, participates in regulating cell proliferation, and associates with tumorigenesis and poor prognosis in several kind of cancers. However, the role of GNL3L in modulating autophagy remains unclear. Here, we verified that GNL3L was higher expressed in esophageal cancer (ESCA) biopsies than that in the corresponding normal biopsies by a human ESCA tissue array. Utilizing immunoblotting and real-time PCR assays, we analyzed the expression of GNL3L in several ESCA cell lines, and it was highly expressed in KYSE410 cells and rarely expressed in KYSE150 cells, respectively. GNL3L overexpression promoted cell viability and cell proliferation in KYSE150 cells. On the contrary, silencing of GNL3L resulted in opposite phenotypes in KYSE410 cells. Furthermore, GNL3L level correlated with autophagic flux and influenced the levels of autophagy core proteins. Meanwhile, GNL3L also affected the AMPK signaling pathway, which is a pivotal signaling pathway for autophagy regulation. In the GNL3L-silenced cells, the AMPK agonist AICAR partly rescued the autophagic flux. Inversely, both pharmacologically and genetically deprivation of AMPK attenuated the autophagic flux induced by GNL3L overexpression. Moreover, AMPK activity alteration influenced the effect of GNL3L in regulating cell proliferation. Collectively, these findings suggest that GNL3L positively regulates cell proliferation and autophagy in ESCA cells via regulating the AMPK signaling, making itself a promising therapeutic target for ESCA.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12032-023-02270-9DOI Listing

Publication Analysis

Top Keywords

cell proliferation
16
gnl3l
12
ampk signaling
12
autophagic flux
12
regulating ampk
8
esophageal cancer
8
regulating cell
8
kyse410 cells
8
kyse150 cells
8
cells gnl3l
8

Similar Publications

Anaerobic probiotics-in situ Se nanoradiosensitizers selectively anchor to tumor with immuno-regulations for robust cancer radio-immunotherapy.

Biomaterials

January 2025

Department of Pharmacy of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, 510632, China. Electronic address:

Developing translational nanoradiosensitizers with multiple activities in sensitizing tumor cells and re-shaping tumor immunosuppressive microenvironments are urgently desired for addressing the poor therapeutic efficacy of radiotherapy in clinic. Inspired by the anaerobic and immunoagonist properties of the probiotic (bifidobacterium longum, BL), herein, a biomimetic Selenium nanoradiosensitizer in situ-formed on the surface of the probiotic (BL@SeNPs) is developed in a facile method to potentiate radiotherapy. BL@SeNPs selectively target to hypoxia regions of tumors and then anchor on the surface of tumor cells to inhibit its proliferation.

View Article and Find Full Text PDF

Exploring the dual roles of sec-dependent effectors from Candidatus Liberibacter asiaticus in immunity of citrus plants.

Plant Cell Rep

January 2025

MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.

The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.

View Article and Find Full Text PDF

We build and study an individual based model of the telomere length's evolution in a population across multiple generations. This model is a continuous time typed branching process, where the type of an individual includes its gamete mean telomere length and its age. We study its Malthusian's behaviour and provide numerical simulations to understand the influence of biologically relevant parameters.

View Article and Find Full Text PDF

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

GITRL enhances cytotoxicity and persistence of CAR-T cells in cancer therapy.

Mol Ther

January 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China, 200241. Electronic address:

CAR T-cell therapy has achieved remarkable clinical success in treating hematological malignancies. However, its clinical efficacy in solid tumors is less satisfactory, partially due to poor in vivo expansion and limited persistence of CAR-T cells. Here, we demonstrated that the overexpression of glucocorticoid-induced tumor necrosis factor receptor-related protein ligand (GITRL) enhances the anti-tumor activity of CAR-T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!