The investigation of twist engineering in easy-axis magnetic systems has revealed remarkable potential for generating topological spin textures. Implementing twist engineering in easy-plane magnets, we introduce a novel approach to achieving fractional topological spin textures, such as merons. Through atomistic spin simulations on twisted bilayer magnets, we demonstrate the formation of a stable double Meron pair, which we refer to as the "Meron Quartet" (MQ). Unlike a single pair, the merons within the MQ exhibit exceptional stability against pair annihilation due to the protective localization mechanism induced by the twist that prevents collision of the Meron cores. Furthermore, we showcase that the stability of the MQ can be enhanced by adjusting the twist angle, resulting in an increased resistance to external perturbations such as external magnetic fields. Our findings highlight the twisted magnet as a promising platform for achieving merons as stable magnetic quasiparticles in van der Waals magnets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.3c03246 | DOI Listing |
Eur Spine J
January 2025
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada.
Purpose: Clinicians monitor scoliosis progression using multiple radiographs during growth. During imaging, arms must be elevated to visualize vertebrae, possibly affecting sagittal alignment. This study aimed to determine the arm position that best represents habitual standing (and possibly allowing hand-based skeletal maturity assessment) to obtain frontal and lateral stereo-radiographs as measured using frontal, sagittal, and transverse angles.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Animal Husbandry, Pasture and Green Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China.
is a destructive pathogen responsible for sunflower sclerotinia rot, resulting in substantial yield and economic losses worldwide. species have demonstrated the capacity to inhibit plant pathogen growth through the production of secondary metabolites. However, there are fewer recent studies focusing on the application of metabolites in inhibiting growth and development and controlling sunflower sclerotinia rot disease.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China.
Poly(glycolic acid) (PGA) is a rapidly degradable polymer mainly used in medical applications, attributed to its relatively high cost. Reducing its price will boost its utilization in a wider range of application fields, such as gas barriers and shale gas extraction. This article presents a strategy that utilizes recycled PGA as a raw material alongside typical carbon nanomaterials, such as graphene oxide nanosheets (GO) and carbon nanotubes (CNTs), to produce low-cost, fully degradable yarns via electrospinning and twisting techniques.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065, United States.
ModeHunter is a modular Python software package for the simulation of 3D biophysical motion across spatial resolution scales using modal analysis of elastic networks. It has been curated from our in-house Python scripts over the last 15 years, with a focus on detecting similarities of elastic motion between atomic structures, coarse-grained graphs, and volumetric data obtained from biophysical or biomedical imaging origins, such as electron microscopy or tomography. With ModeHunter, normal modes of biophysical motion can be analyzed with various static visualization techniques or brought to life by dynamics animation in terms of single or multimode trajectories or decoy ensembles.
View Article and Find Full Text PDFSmall Methods
January 2025
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
Bilayer graphene ribbons (GRs) hold great promise for the fabrication of next-generation nanodevices, thanks to unparalleled electronic properties, especially the tunable bandgap in association with twist angle, ribbon width, edge structure, and interlayer coupling. A common challenge in manufacturing bilayer GRs via templated chemical vapor deposition (CVD) approach is uncontrollable dewetting of micro- and nano-scaled patterned metal substrates. Herein, a confined CVD synthetic strategy of bilayer GR arrays is proposed, by utilizing the bifunctional Ni as a buffered adhesion layer to regulate the anisotropic dewetting of metal film in the V-groove and as a carbon-dissolution regulated metal to initiate the bilayer nucleation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!