Oilseed rape and other crops of Brassica napus have a high demand for boron (B). Boron deficiencies result in the inhibition of root growth, and eventually premature flower abortion. Understanding the genetic mechanisms underlying flower abortion in B-limiting conditions could provide the basis to enhance B-efficiency and prevent B-deficiency-related yield losses. In this study, we assessed transcriptomic responses to B-deficiency in diverse inflorescence tissues at multiple time points of soil-grown plants that were phenotypically unaffected by B-deficiency until early flowering. Whilst transcript levels of known B transporters were higher in B-deficient samples, these remained remarkably stable as the duration of B-deficiency increased. Meanwhile, GO-term enrichment analysis indicated a growing response resembling that of a pathogen or pest attack, escalating to a huge transcriptome response in shoot heads at mid-flowering. Grouping differentially expressed genes within this tissue into MapMan functional bins indicated enrichment of genes related to wounding, jasmonic acid and WRKY transcription factors. Individual candidate genes for controlling the "flowering-without-seed-setting" phenotype from within MapMan biotic stress bins include those of the metacaspase family, which have been implicated in orchestrating programmed cell death. Overall temporal expression patterns observed here imply a dynamic response to B-deficiency, first increasing expression of B transporters before recruiting various biotic stress-related pathways to coordinate targeted cell death, likely in response to as yet unidentified B-deficiency induced damage-associated molecular patterns (DAMPs). This response indicates new pathways to target and dissect to control B-deficiency-induced flower abortion and to develop more B-efficient crops.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.14088DOI Listing

Publication Analysis

Top Keywords

flower abortion
12
brassica napus
8
cell death
8
response
6
b-deficiency
5
napus boron
4
boron deficient
4
deficient inflorescence
4
inflorescence transcriptome
4
transcriptome resembles
4

Similar Publications

Transcriptome and phytohormone profiling of stamen and pistil in Brassica napus under boron deficiency.

Plant Physiol Biochem

December 2024

National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China. Electronic address:

Plant reproduction is a fundamental requirement for plants to sustain genetic inheritance. In the perspective of plant nutrition, such process is strongly influenced by boron deficiency (-B) and as documented about a century ago. To date, little is known about the mechanism of boron deficiency-induced fertility reduction.

View Article and Find Full Text PDF

OsPAD1, encoding a non-specific lipid transfer protein, is required for rice pollen aperture formation.

Plant Mol Biol

December 2024

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China.

Article Synopsis
  • - Plant lipid transfer proteins (LTPs) are crucial for moving lipids between membranes, impacting pollen wall development, including the pollen aperture structure.
  • - The study focuses on a rice mutant called pollen aperture defect 1 (Ospad1), which shows male sterility due to abnormal pollen grain development linked to a non-specific LTP that fails to properly bind lipids.
  • - Researchers found that OsPAD1 interacts with a gene involved in pollen development, providing new insights into how LTPs function in forming pollen apertures, which could have broader implications for other cereal crops.
View Article and Find Full Text PDF

Single-cell transcriptomic and cell‑type‑specific regulatory networks in Polima temperature-sensitive cytoplasmic male sterility of Brassica napus L.

BMC Plant Biol

December 2024

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070, China.

Background: Thermosensitive male sterility (TMS) is a heritable agronomic trait influenced by the interaction between genotype and environment. The anthers of plants are composed of various specialized cells, each of which plays different roles in plant reproduction. In rapeseed (Brassica napus L.

View Article and Find Full Text PDF

Understanding phenology and its regulation is central for the agronomic adaptation of chickpea. We grew 24 chickpea genotypes in 12 environments to analyse: the environmental and genotypic drivers of phenology; associations between phenology and yield; and phenotypes associated with allelic variants of three flowering related candidate loci: CaELF3a; a cluster of three FT genes on chromosome 3; and an orthologue of the floral promoter GIGANTEA on chromosome 4. A simple model with 3 genotype-specific parameters explained the differences in flowering response to daylength.

View Article and Find Full Text PDF

Orf116b Induces Pollen Abortion in a Novel Cotton ( L.) Cytoplasmic Male Sterile Line J4A.

Int J Mol Sci

November 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China.

Cytoplasmic male sterile (CMS) systems have great potential in hybrid seed production in many plants. However, the incompatibility between the cytoplasmic and nuclear genes and the availability of fewer CMS lines limit the system's application in cotton heterosis. Therefore, the present study sequenced the mitochondrial (mt) genomes of a novel cotton ( L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!