This article reviews the correlation between presepsin and sepsis and the resulting acute respiratory distress syndrome (ARDS). ARDS is a severe complication of sepsis. Despite the successful application of protective mechanical ventilation, restrictive fluid therapy, and neuromuscular blockade, which have effectively reduced the morbidity and mortality associated with ARDS, the mortality rate among patients with sepsis-associated ARDS remains notably high. The challenge lies in the prediction of ARDS onset and the timely implementation of intervention strategies. Recent studies have demonstrated significant variations in presepsin (PSEP) levels between patients with sepsis and those without, particularly in the context of ARDS. Moreover, these studies have revealed substantially elevated PSEP levels in patients with sepsis-associated ARDS compared to those with nonsepsis-associated ARDS. Consequently, PSEP emerges as a valuable biomarker for identifying patients with an increased risk of sepsis-associated ARDS and to predict in-hospital mortality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/postmj/qgad132 | DOI Listing |
Immun Inflamm Dis
January 2025
The First Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
Background: Sepsis and acute respiratory distress syndrome (ARDS) are common inflammatory conditions in intensive care, with ARDS significantly increasing mortality in septic patients. PANoptosis, a newly discovered form of programmed cell death involving multiple cell death pathways, plays a critical role in inflammatory diseases. This study aims to elucidate the PANoptosis-related genes (PRGs) and their involvement in the progression of sepsis to ARDS.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Sepsis remains a leading cause of morbidity and mortality worldwide due to its rapid progression and heterogeneous nature. This review explores the potential of Artificial Intelligence (AI) to transform sepsis management, from early detection to personalized treatment and real-time monitoring. AI, particularly through machine learning (ML) techniques such as random forest models and deep learning algorithms, has shown promise in analyzing electronic health record (EHR) data to identify patterns that enable early sepsis detection.
View Article and Find Full Text PDFMedComm (2020)
February 2025
Pulmonary endothelial cell (EC) activation is a key factor in acute respiratory distress syndrome (ARDS). In sepsis, increased glycolysis leads to lactate buildup, which induces lysine lactylation (Kla) on histones and other proteins. However, the role of protein lactylation in EC dysfunction during sepsis-induced ARDS remains unclear.
View Article and Find Full Text PDFJ Inflamm Res
December 2024
Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 317000, People's Republic of China.
Introduction: Sepsis-induced acute lung injury (ALI), a critical sequela of systemic inflammation, often progresses to acute respiratory distress syndrome, conferring high mortality. Although UMI-77 has demonstrated efficacy in mitigating lung injury in sepsis, the molecular mechanisms underlying its action have not yet been fully elucidated.
Methods: This study aimed to delineate the mechanism by which UMI-77 counteracts sepsis-induced ALI using comprehensive transcriptomic and metabolomic analyses.
Exp Lung Res
November 2024
Department of Intensive Care Unit, Key Laboratory for Critical Care Medicine of the Ministry of Health, Emergency Medicine Research Institute, Tianjin First Center Hospital, Nankai University, Tianjin, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!