AI Article Synopsis

  • Ischemic damage to the intestinal barrier in conditions like necrotizing enterocolitis leads to higher mortality in younger patients, prompting research using a pig model to study age-dependent outcomes.
  • The study highlights that neonatal pigs exhibit a lack of mucosal barrier recovery, which can potentially be improved by using homogenized mucosa from older pigs, suggesting a role for enteric glial cells (EGCs) in this process.
  • Research shows that the EGC network develops significantly after birth and its density near injured intestinal areas is crucial for coordinating repair, revealing important insights into the mechanisms of intestinal barrier recovery following ischemic injury.

Article Abstract

Ischemic damage to the intestinal epithelial barrier, such as in necrotizing enterocolitis or small intestinal volvulus, is associated with higher mortality rates in younger patients. We have recently reported a powerful pig model to investigate these age-dependent outcomes in which mucosal barrier restitution is strikingly absent in neonates but can be rescued by direct application of homogenized mucosa from older, juvenile pigs by a yet-undefined mechanism. Within the mucosa, a postnatally developing network of enteric glial cells (EGCs) is gaining recognition as a key regulator of the mucosal barrier. Therefore, we hypothesized that the developing EGC network may play an important role in coordinating intestinal barrier repair in neonates. Neonatal and juvenile jejunal mucosa recovering from surgically induced intestinal ischemia was visualized by scanning electron microscopy and the transcriptomic phenotypes were assessed by bulk RNA sequencing. EGC network density and glial activity were examined by Gene Set Enrichment Analysis, three-dimensional (3-D) volume imaging, and Western blot and its function in regulating epithelial restitution was assessed ex vivo in Ussing chamber using the glia-specific inhibitor fluoroacetate (FA), and in vitro by coculture assay. Here we refine and elaborate our translational model, confirming a neonatal phenotype characterized by a complete lack of coordinated reparative signaling in the mucosal microenvironment. Furthermore, we report important evidence that the subepithelial EGC network changes significantly over the early postnatal period and demonstrate that the proximity of a specific functional population of EGC to wounded intestinal epithelium contributes to intestinal barrier restitution following ischemic injury. This study refines a powerful translational pig model, defining an age-dependent relationship between enteric glia and the intestinal epithelium during intestinal ischemic injury and confirming an important role for enteric glial cell (EGC) activity in driving mucosal barrier restitution. This study suggests that targeting the enteric glial network could lead to novel interventions to improve recovery from intestinal injury in neonatal patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211042PMC
http://dx.doi.org/10.1152/ajpgi.00216.2022DOI Listing

Publication Analysis

Top Keywords

enteric glial
16
barrier restitution
16
ischemic injury
12
mucosal barrier
12
egc network
12
intestinal
10
glial cell
8
epithelial barrier
8
intestinal ischemic
8
early postnatal
8

Similar Publications

Background And Aims: The enteric nervous system (ENS), comprised of neurons and glia, regulates intestinal motility. Hirschsprung disease (HSCR) results from defects in ENS formation, yet while neuronal aspects have been extensively studied, enteric glia remain disregarded. This study aimed to explore enteric glia diversity in health and disease.

View Article and Find Full Text PDF

Glial-immune interactions in barrier organs.

Mucosal Immunol

December 2024

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK. Electronic address:

Neuro-immune interactions within barrier organs, such as lung, gut, and skin, are crucial in regulating tissue homeostasis, inflammatory responses, and host defence. Our rapidly advancing understanding of peripheral neuroimmunology is transforming the field of barrier tissue immunology, offering a fresh perspective for developing therapies for complex chronic inflammatory disorders affecting barrier organs. However, most studies have primarily examined interactions between the peripheral nervous system and the immune system from a neuron-focused perspective, while glial cells, the nonneuronal cells of the nervous system, have received less attention.

View Article and Find Full Text PDF

Implication of the enteric glia in the IBS-like colonic inflammation associated with endometriosis.

BMC Womens Health

December 2024

Department of Basic Sciences - Physiology Division, Ponce Health Sciences University, Ponce Research Institute, PO Box 7004, Ponce, 00732-7004, PR, Puerto Rico.

Background: Endometriosis is a complex gynecological disorder characterized by the ectopic growth of endometrial tissue. Symptoms of endometriosis are known to impair the quality of life of patients, and among these are found dysmenorrhea, chronic pelvic pain, and gastrointestinal (GI) issues. GI issues such as painful bowel movements, bloating and constipation or diarrhea, are one of the common reasons for misdiagnosis with irritable bowel syndrome (IBS).

View Article and Find Full Text PDF

Background/aims: Research has indicated that treatment with rosuvastatin can improve liver pathology in metabolic-associated fatty liver disease (MAFLD) patients and that treatment with Bifidobacterium can improve MAFLD. Therefore, the effects of Bifidobacterium, rosuvastatin, and their combination on related indices in a rat model of diet-induced MAFLD need to be investigated.

Methods: Forty rats were divided into five groups: the normal diet group (N), high-fat diet (HFD) model group (M), HFD + probiotic group (P), HFD + statin group (S), and HFD + probiotic + statin group (P-S).

View Article and Find Full Text PDF

Chemotherapy-Induced Neuropathy Affecting the Gastrointestinal Tract.

Neurogastroenterol Motil

December 2024

Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain.

Article Synopsis
  • Cancer treatments can lead to severe gastrointestinal side effects, both acute (short-term) and chronic (long-term), impacting patients' overall health.
  • This article reviews chemotherapy's neurotoxic effects on the enteric nervous system (ENS) and how chemotherapy-induced enteric neuropathy (CIEN) may cause persistent gastrointestinal dysfunctions.
  • Research indicates that CIEN results in reduced nerve cell density and altered neuronal activity in the ENS, affecting gut functions and potentially leading to brain-gut axis disorders, highlighting the need for more research in this overlooked area.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!