Effect of fire and post-fire management on soil microbial communities in a lower subtropical forest ecosystem after a mountain fire.

J Environ Manage

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, 51650, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China. Electronic address:

Published: February 2024

Wildfires and post-fire management exert profound effects on soil properties and microbial communities in forest ecosystems. Understanding microbial community recovery from fire and what the best post-fire management should be is very important but needs to be sufficiently studied. In light of these gaps in our understanding, this study aimed to assess the short-term effects of wildfire and post-fire management on both bacteria and fungi community composition, diversity, structure, and co-occurrence networks, and to identify the principal determinants of soil processes influencing the restoration of these communities. Specifically, we investigated soil bacterial and fungal community composition, diversity, structure, and co-occurrence networks in lower subtropical forests during a short-term (<3 years) post-fire recovery period at four main sites in Guangdong Province, southern China. Our results revealed significant effects of wildfires on fungal community composition, diversity, and co-occurrence patterns. Network analysis indicated reduced bacterial network complexity and connectivity post-fire, while the same features were enhanced in fungal networks. However, post-fire management effects on microbial communities were negligible. Bacterial diversity correlated positively with soil microbial biomass nitrogen, soil organic carbon, and soil total nitrogen. Conversely, based on the best random forest model, fungal community dynamics were negatively linked to nitrate-nitrogen and soil water content. Spearman's correlation analysis suggested positive associations between bacterial networks and soil factors, whereas fungal networks exhibited predominantly negative associations. This study elucidates the pivotal role of post-fire management in shaping ecological outcomes. Additionally, it accentuates the discernible distinctions between bacterial and fungal responses to fire throughout a short-term recovery period. These findings contribute novel insights that bear significance in evaluating the efficacy of environmental management strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.119885DOI Listing

Publication Analysis

Top Keywords

post-fire management
16
microbial communities
8
lower subtropical
8
community composition
8
composition diversity
8
diversity structure
8
structure co-occurrence
8
co-occurrence networks
8
fire post-fire
4
management
4

Similar Publications

Water pollution caused by ash from grassland fires alters the molecular, biochemical, and morphological biomarkers of non-biting midge larvae.

J Hazard Mater

December 2024

Post-graduation program in Ecology and Biodiversity Conservation, Federal University of Mato Grosso (UFMT), Mato Grosso, MT 78060-900, Brazil; Post-graduation program in Ecology. Department of Ecology and Zoology, Laboratory of Freshwater Biodiversity, Federal University of Santa Catarina (UFSC), Florianópolis, SC 88040-900, Brazil.

The frequency and intensity of wildfires have been increasing in many parts of the world, which may result in biodiversity loss. Wildfires can devastate plant communities, generating toxic ash that pollutes watercourses through runoff. However, our understanding of the effects of ash exposure on aquatic biodiversity is still limited.

View Article and Find Full Text PDF

Increasingly intense changes in climatic conditions and the use of modified materials are causing fires, the consequences of which are increasingly serious for the environment. On one hand, there is the issue of access to water resources. On the other hand, there is the problem of post-fire wastewater, which often contains a mixture of simple inorganic compounds and complex organic molecules, making the removal of pollutants a difficult task requiring innovative approaches.

View Article and Find Full Text PDF

Wildfires lead to socio-economic and environmental impacts. These impacts include hydrological instability, which can cause severe damage, especially where infrastructures are present. Post-rehabilitation measures can be useful in reducing or preventing erosion or hydrogeological risks.

View Article and Find Full Text PDF

A new index to estimate ecosystem multifunctionality: Theoretical approach and an application to a burned forest of Central Eastern Spain.

J Environ Manage

December 2024

Department of Agroforestry Technology, Science and Genetics, School of Advanced Agricultural and Forestry Engineering, Campus Universitario s/n, Castilla La Mancha University, E-02071, Albacete, Spain.

Several indexes have been proposed in the scientific literature and widely applied in many environments to evaluate the ecosystem multifunctionality. However, some indexes are based on the simple average of the environmental indicators (EIs) and ecosystem functions (EFs), which do not consider the ecosystem complexity and mutual relationships among the composing variables. In order to overcome these limitations, this study proposes a new method that modifies the ecosystem multifunctionality (EMF) index proposed by Maestre et al.

View Article and Find Full Text PDF

Background: Wildfires can have complex effects on wildlife populations. Understanding how post-fire conditions affect the movement ecology of threatened species can assist in better conservation and management, including informing the release of rescued and rehabilitated animals. The 2019-2020 megafires in Australia resulted in thousands of animals coming into care due to injury or concerns over habitat degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!