Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Volatile anesthetics induce hyperpolarizing potassium currents in spinal cord neurons that may contribute to their mechanism of action. They are induced at lower concentrations of isoflurane in noncholinergic neurons from mice carrying a loss-of-function mutation of the Ndufs4 gene, required for mitochondrial complex I function. The yeast NADH dehydrogenase enzyme, NDi1, can restore mitochondrial function in the absence of normal complex I activity, and gain-of-function Ndi1 transgenic mice are resistant to volatile anesthetics. The authors tested whether NDi1 would reduce the hyperpolarization caused by isoflurane in neurons from Ndufs4 and wild-type mice. Since volatile anesthetic behavioral hypersensitivity in Ndufs4 is transduced uniquely by glutamatergic neurons, it was also tested whether these currents were also unique to glutamatergic neurons in the Ndufs4 spinal cord.
Methods: Spinal cord neurons from wild-type, NDi1, and Ndufs4 mice were patch clamped to characterize isoflurane sensitive currents. Neuron types were marked using fluorescent markers for cholinergic, glutamatergic, and γ-aminobutyric acid-mediated (GABAergic) neurons. Norfluoxetine was used to identify potassium channel type. Neuron type-specific Ndufs4 knockout animals were generated using type-specific Cre-recombinase with floxed Ndufs4.
Results: Resting membrane potentials (RMPs) of neurons from NDi1;Ndufs4, unlike those from Ndufs4, were not hyperpolarized by 0.6% isoflurane (Ndufs4, ΔRMP -8.2 mV [-10 to -6.6]; P = 1.3e-07; Ndi1;Ndufs4, ΔRMP -2.1 mV [-7.6 to +1.4]; P = 1). Neurons from NDi1 animals in a wild-type background were not hyperpolarized by 1.8% isoflurane (wild-type, ΔRMP, -5.2 mV [-7.3 to -3.2]; P = 0.00057; Ndi1, ΔRMP, 0.6 mV [-1.7 to 3.2]; P = 0.68). In spinal cord slices from global Ndufs4 animals, holding currents (HC) were induced by 0.6% isoflurane in both GABAergic (ΔHC, 81.3 pA [61.7 to 101.4]; P = 2.6e-05) and glutamatergic (ΔHC, 101.2 pA [63.0 to 146.2]; P = 0.0076) neurons. In neuron type-specific Ndufs4 knockouts, HCs were increased in cholinergic (ΔHC, 119.5 pA [82.3 to 156.7]; P = 0.00019) and trended toward increase in glutamatergic (ΔHC, 85.5 pA [49 to 126.9]; P = 0.064) neurons but not in GABAergic neurons.
Conclusions: Bypassing complex I by overexpression of NDi1 eliminates increases in potassium currents induced by isoflurane in the spinal cord. The isoflurane-induced potassium currents in glutamatergic neurons represent a potential downstream mechanism of complex I inhibition in determining minimum alveolar concentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939847 | PMC |
http://dx.doi.org/10.1097/ALN.0000000000004891 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!