In the current project, magnetic Bio-MOF-13 was used as an efficient carrier for the targeted delivery and controlled release of doxorubicin (DOX) to MDA-MB-231 cells. Magnetic Bio-MOF-13 was prepared by two strategies and compared to determine the optimal state of the structure. In the first path, Bio-MOF-13 was grown on the surface of FeO nanoparticles (), while in the second method, the two presynthesized materials were mixed together (). , among prepared nanocomposites, was chosen for biological evaluation due to its favorable structural features like a high accessible surface area and pore volume. Also, it is highly advantageous for drug release due to its ability to selectively release DOX in the acidic pH of breast cancer cells, while preventing any premature release in the neutral pH of the blood. Drug release from the carrier structure is precisely controlled not only by pH but also by an external magnetic field, guaranteeing accurate drug delivery at the intended location. Confocal microscopy and flow cytometry assay clearly confirms the increase in drug concentration in the MDA-MB-231 cell line after external magnet applying. This point, along with the low toxicity of the carrier components, makes it a suitable candidate for injectable medicine. According to MTT results, the percentage of viable MDA-MB-231 cells after treatment with 10 μL of DOX@FeO/Bio-MOF-13 core/shell composite in different concentrations, in the presence and absence of magnetic field is 0.87 ± 0.25 and 2.07 ± 0.15, respectively. As a result, the DOX@FeO/Bio-MOF-13 core/shell composite was performed and approved for targeted drug delivery and magnetic field-assisted controlled release of DOX to the MDA-MB-231 cell line.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c14363 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of Chicago Division of the Physical Sciences, chemistry, UNITED STATES OF AMERICA.
Immune checkpoint blockade (ICB) has revolutionized the treatment of many cancers by leveraging the immune system to combat malignancies. However, its efficacy is limited by the immunosuppressive tumor microenvironment and other regulatory mechanisms of the immune system. Innate immune modulators (IIMs) provide potent immune activation to complement adaptive immune responses and help overcome resistance to ICB.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India.
The present investigation aims to develop a reactive oxygen species (ROS) and esterase-responsive biodegradable mannosylated polyurethane to effectively deliver the encapsulated antileishmanial drug amphotericin B (AmB) selectively to infected macrophage cells. Owing to suitable amphiphilic balance, the as-synthesized glycosylated polyurethane () with aryl boronic ester-based diol () moiety as ROS-trigger, water-soluble mannose pendants, and fluorescent 4,4-difluoro-4-bora-3a,4a-diaza--indacene (BODIPY) chain ends for bioimaging formed nanoaggregates in an aqueous medium as confirmed by H NMR spectroscopy, dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and critical aggregation concentration (CAC) measurements. Aided by two endogenous stimuli present in phagolysosome, ROS and esterase, AmB-encapsulated polymeric nanoaggregates as drug delivery vehicles achieved an efficient reduction of both and intracellular amastigote burden compared to the free AmB.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China.
Epstein-Barr nuclear antigen 1 (EBNA1), a sequence-specific DNA binding protein of Epstein-Barr virus (EBV), is essential for viral genome replication and maintenance and is therefore an attractive target for the therapeutic intervention of EBV-associated cancers. Several EBNA1-specific inhibitors have demonstrated the ability to block EBNA1 function in vitro, but practical delivery strategies for these inhibitors in vivo are still lacking. Here, we report an intelligent hierarchical targeting theranostic nanosystem (denoted as mZGOCS@MnO-P5) that integrates an azide (N3) terminal dual-targeting peptide (N3-P5), a tumor microenvironment-responsive degradable MnO nanosheet, and a mesoporous ZnGaO:Cr, Sn near-infrared persistent luminescence (NIR-PL) nanosphere (mZGOCS).
View Article and Find Full Text PDFSci Adv
January 2025
Department of Cardiac Surgery, Peking University Third Hospital, Beijing 100191, China.
Following myocardial infarction (MI), the accumulation of CD86-positive macrophages in the ischemic injury zone leads to secondary myocardial damage. Precise pharmacological intervention targeting this process remains challenging. This study engineered a nanotherapeutic delivery system with CD86-positive macrophage-specific targeting and ultrasound-responsive release capabilities.
View Article and Find Full Text PDFCell Rep
January 2025
State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:
Pseudomonas syringae deploys a type III secretion system (T3SS) to deliver effector proteins to facilitate infection of plant cells; however, little is known about the direct interactions between T3SS components and plants. Here, we show that the specialized lytic transglycosylase (SLT) domain of P. syringae pv.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!