Cancer is a complex disease characterized by the uncontrolled growth of abnormal cells, leading to the formation of tumours. STK17B, a member of the DAPK family, has been implicated in various cancers and is considered a potential therapeutic target. However, no drug in the market has been approved for the treatment of STK17 B-associated cancer disease. This research aimed to identify direct inhibitors of STK17B using computational techniques. Ligand-based virtual screening and molecular docking were performed, resulting in the selection of three lead compounds (CID_135698391, CID_135453100, CID_136599608) with superior binding affinities compared to the reference compound dovitinib. While molecular docking simulation revealed specific interactions between the lead compounds and key amino acid residues at the binding pocket of STK17B, molecular dynamics simulations demonstrated that CID_135453100 and CID_136599608 exhibit stable conformations and comparable flexibility to dovitinib. However, CID_135698391 did not perform well using this metric as it displayed poor stability. Overall, small-molecule compounds CID_135453100 and CID_136599608 showed promising binding interactions and stability, suggesting their potential as direct inhibitors of STK17B. These findings could contribute to the exploration of novel therapeutic options targeting STK17B in cancer treatment.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2296605DOI Listing

Publication Analysis

Top Keywords

molecular docking
12
cid_135453100 cid_136599608
12
targeting stk17b
8
stk17b cancer
8
molecular dynamics
8
direct inhibitors
8
inhibitors stk17b
8
lead compounds
8
stk17b
6
molecular
5

Similar Publications

The P2YR is activated by UDP and UDP glucose and is involved in many human inflammatory diseases. Based on the molecular docking analysis of currently reported P2YR antagonists and the crystallographic overlap study between PPTN and compound , a series of 3-substituted 5-amidobenzoate derivatives were designed, synthesized, and identified as promising P2YR antagonists. The optimal compound (methyl 3-(1-benzo[]imidazol-2-yl)-5-(2-(-tolyl) acetamido)benzoate, IC = 0.

View Article and Find Full Text PDF

Unlocking the potential of : A breakthrough in liver cancer treatment Wnt/β-catenin pathway modulation.

World J Gastroenterol

January 2025

Department of Internal Medicine, Mixed Hospital of Laghouat, Laghouat Faculty of Medicine, Amar Telidji University, Laghouat 03000, Algeria.

Liver cancer remains a significant global health challenge, characterized by high incidence and mortality rates. Despite advancements in medical treatments, the prognosis for liver cancer patients remains poor, highlighting the urgent need for novel therapeutic approaches. Traditional Chinese medicine (TCM), particularly (CB), has shown promise in addressing this need due to its multi-target therapeutic mechanisms.

View Article and Find Full Text PDF

Podophyllotoxin, along with its numerous derivatives and related compounds, is well known for its broad-spectrum pharmacological activity, especially for anticancer potential. In this study, several isatin-podophyllotoxin hybrid compounds were successfully synthesized with good yields through microwave-prompted three-component reactions of 2-amino-1,4-naphthoquinone, various substituted isatins, and tetronic acid. Their cytotoxicity was assessed against four types of human cancer cell lines, HepG2 (hepatoma carcinoma), MCF7 (breast cancer), A549 (non-small lung cancer), and KB (epidermoid carcinoma), alongside nontumorigenic HEK-293 human embryonic kidney cells.

View Article and Find Full Text PDF

In this paper, a series of novel quinazoline-4(3)-one-2-carbothioamide derivatives (8a-p) were designed and synthesized the Wilgerodt-Kindler reaction between 2-methylquinazoline-4-one 10 and amines using S/DMSO as the oxidizing system. Their characteristics were confirmed by IR, NMR, HRMS spectra, and their melting point. These novel derivatives (8a-p) were evaluated for their anti-inflammatory activity by inhibiting NO production in lipopolysaccharide (LPS)-activated RAW 264.

View Article and Find Full Text PDF

Exploring the noncovalent interaction between β-lactoglobulin and flavonoids under nonthermal process: Characterization, physicochemical properties, and potential for lycopene delivering.

Food Chem X

January 2025

Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.

The poor structure stability and low bioavailability of lycopene (LY) hampers the wide application in food field. Thus, it is crucial to explore novel deliver carrier for LY based on protein-flavonoid complexes. In this study, the noncovalent interaction mechanism between β-lactoglobulin (β-LG) and flavonoids (apigenin (API), luteolin (LUT), myricetin (MY), apigenin-7-O-glucoside, luteolin-7-O-glucoside, and myricetrin) under ultrasound treatment was explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!