The prevalence and severity of metabolic dysfunction-associated steatotic liver disease (MASLD) are increasing. Physicians who treat patients with MASLD may acknowledge the strong coincidence with cardiometabolic disease, including atherosclerotic cardiovascular disease (asCVD). This raises questions on co-occurrence, causality, and the need for screening and multidisciplinary care for MASLD in patients with asCVD, and vice versa. Here, we review the interrelations of MASLD and heart disease and formulate answers to these matters. Epidemiological studies scoring proxies for atherosclerosis and actual cardiovascular events indicate increased atherosclerosis in patients with MASLD, yet no increased risk of asCVD mortality. MASLD and asCVD share common drivers: obesity, insulin resistance and type 2 diabetes mellitus (T2DM), smoking, hypertension, and sleep apnea syndrome. In addition, Mendelian randomization studies support that MASLD may cause atherosclerosis through mixed hyperlipidemia, while such evidence is lacking for liver-derived procoagulant factors. In the more advanced fibrotic stages, MASLD may contribute to heart failure with preserved ejection fraction by reduced filling of the right ventricle, which may induce fatigue upon exertion, often mentioned by patients with MASLD. Some evidence points to an association between MASLD and cardiac arrhythmias. Regarding treatment and given the strong co-occurrence of MASLD and asCVD, pharmacotherapy in development for advanced stages of MASLD would ideally also reduce cardiovascular events, as has been demonstrated for T2DM treatments. Given the common drivers, potential causal factors and especially given the increased rate of cardiovascular events, comprehensive cardiometabolic risk management is warranted in patients with MASLD, preferably in a multidisciplinary approach.

Download full-text PDF

Source
http://dx.doi.org/10.1097/HEP.0000000000000735DOI Listing

Publication Analysis

Top Keywords

patients masld
16
masld
13
cardiovascular events
12
metabolic dysfunction-associated
8
dysfunction-associated steatotic
8
steatotic liver
8
liver disease
8
masld ascvd
8
common drivers
8
stages masld
8

Similar Publications

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common metabolism-related multisystem clinical disorder, often accompanied by a high comorbidity of mild cognitive impairment (MCI). Increasing evidence suggests that the amygdala is crucial in cognitive processing during metabolic dysfunction. Nevertheless, the role of the amygdala in the neural mechanisms of MASLD with MCI (MCI_MASLD) remains unclear.

View Article and Find Full Text PDF

The global prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is estimated at 32.4%, reflecting its growing clinical significance. MASLD, which includes MASLD and metabolic dysfunction-associated steatohepatitis (MASH) has been linked to increased metabolic, cardiovascular, and malignant morbidity.

View Article and Find Full Text PDF

Resmetirom is a thyroid hormone receptor agonist that has been recently approved by the FDA for the management of metabolic dysfunction-associated steatohepatitis (MASH). MASH is a severe form of metabolic dysfunction-associated fatty liver disease (MASLD), which is marked by hepatic inflammation and potential progression to cirrhosis and liver cancer. This review analyzes and demonstrates the efficacy of resmetirom in reducing intra-hepatic lipids, improving liver histology, and improving metabolic parameters.

View Article and Find Full Text PDF

Background & Aims: Metabolic dysfunction-associated steatotic liver (MASLD) progression is driven by chronic inflammation and fibrosis, largely influenced by Kupffer cell (KC) dynamics, particularly replenishment of pro-inflammatory monocyte-derived KCs (MoKCs) due to increased death of embryo-derived KCs. Adenosine A3 receptor (A3AR) plays a key role in regulating metabolism and immune responses, making it a promising therapeutic target. This study aimed to investigate the impact of selective A3AR antagonism for regulation of replenished MoKCs, thereby improving MASLD.

View Article and Find Full Text PDF

Multi-omics profiling reveals altered mitochondrial metabolism in adipose tissue from patients with metabolic dysfunction-associated steatohepatitis.

EBioMedicine

December 2024

Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain; The Campus of International Excellence Southern Catalonia, Tarragona, Spain. Electronic address:

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) and its more severe form steatohepatitis (MASH) contribute to rising morbidity and mortality rates. The storage of fat in humans is closely associated with these diseases' progression. Thus, adipose tissue metabolic homeostasis could be key in both the onset and progression of MASH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!