Pseudophosphatases have been solidified as important signaling molecules that regulate signal transduction cascades. However, their mechanisms of action remain enigmatic. Reflecting this mystery, the prototypical pseudophosphatase STYX (phospho-serine-threonine/tyrosine-binding protein) was named with allusion to the river of the dead in Greek mythology to emphasize that these molecules are "dead" phosphatases. Although proteins with STYX domains do not catalyze dephosphorylation, this does not preclude their having other functions, including as integral elements of signaling networks. Thus, understanding their roles may mark them as potential novel drug targets. This chapter outlines common strategies used to characterize the functions of pseudophosphatases, using as an example MK-STYX [MAPK (mitogen-activated protein kinase) phospho-serine-threonine/tyrosine-binding], which has been linked to tumorigenesis, hepatocellular carcinoma, glioblastoma, apoptosis, and neuronal differentiation. We start with the importance of "restoring" (when possible) phosphatase activity in a pseudophosphatase, so the active mutant may be used as a comparison control throughout immunoprecipitation and mass spectrometry analyses. To this end, we provide protocols for site-directed mutagenesis, mammalian cell transfection, co-immunoprecipitation, phosphatase activity assays, and immunoblotting that we have used to investigate MK-STYX and the active mutant MK-STYX. We also highlight the importance of utilizing RNA interference (RNAi) "knockdown" technology to determine a cellular phenotype in various cell lines. Therefore, we outline our protocols for introducing short hairpin RNA (shRNA) expression plasmids into mammalian cells and quantifying knockdown of gene expression with real-time quantitative PCR (qPCR). We also provide a bioinformatic approach to investigating MK-STYX and MK-STYX. These bioinformatic approaches can stand alone experimentally but also complement and enhance "wet" bench approaches such as binding assays and/or activity assays. A combination of cellular, molecular, biochemical, proteomic, and bioinformatic techniques has been a powerful tool in identifying novel functions of MK-STYX. Likewise, the information provided here should be a helpful guide to elucidating the functions of other pseudophosphatases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3569-8_2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!