A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MRI segmentation of tooth tissue in age prediction of sub-adults - a new method for combining data from the 1st, 2nd, and 3rd molars. | LitMetric

Purpose: We aimed to establish a model combining MRI volume measurements from the 1st, 2nd and 3rd molars for age prediction in sub-adults and compare the age prediction performance of different combinations of all three molars, internally in the study cohort.

Material And Method: We examined 99 volunteers using a 1.5 T MR scanner with a customized high-resolution single T2 sequence. Segmentation was performed using SliceOmatic (Tomovision©). Age prediction was based on the tooth tissue ratio (high signal soft tissue + low signal soft tissue)/total. The model included three correlation parameters to account for statistical dependence between the molars. Age prediction performance of different combinations of teeth for the three molars was assessed using interquartile range (IQR).

Results: We included data from the 1st molars from 87 participants (F/M 59/28), 2nd molars from 93 (F/M 60/33) and 3rd molars from 67 (F/M 45/22). The age range was 14-24 years with a median age of 18 years. The model with the best age prediction performance (smallest IQR) was 46-47-18 (lower right 1st and 2nd and upper right 3rd molar) in males. The estimated correlation between the different molars was 0.620 (46 vs. 47), 0.430 (46 vs. 18), and 0.598 (47 vs. 18). IQR was the smallest in tooth combinations including a 3rd molar.

Conclusion: We have established a model for combining tissue volume measurements from the 1st, 2nd and 3rd molars for age prediction in sub-adults. The prediction performance was mostly driven by the 3rd molars. All combinations involving the 3rd molar performed well.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003927PMC
http://dx.doi.org/10.1007/s00414-023-03149-0DOI Listing

Publication Analysis

Top Keywords

age prediction
28
3rd molars
20
1st 2nd
16
prediction performance
16
prediction sub-adults
12
2nd 3rd
12
molars age
12
molars
11
age
9
tooth tissue
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!