Study Design: Retrospective cohort study.

Objectives: This study assessed the effectiveness of a popular large language model, ChatGPT-4, in predicting Current Procedural Terminology (CPT) codes from surgical operative notes. By employing a combination of prompt engineering, natural language processing (NLP), and machine learning techniques on standard operative notes, the study sought to enhance billing efficiency, optimize revenue collection, and reduce coding errors.

Methods: The model was given 3 different types of prompts for 50 surgical operative notes from 2 spine surgeons. The first trial was simply asking the model to generate CPT codes for a given OP note. The second trial included 3 OP notes and associated CPT codes to, and the third trial included a list of every possible CPT code in the dataset to prime the model. CPT codes generated by the model were compared to those generated by the billing department. Model evaluation was performed in the form of calculating the area under the ROC (AUROC), and area under precision-recall curves (AUPRC).

Results: The trial that involved priming ChatGPT with a list of every possible CPT code performed the best, with an AUROC of .87 and an AUPRC of .67, and an AUROC of .81 and AUPRC of .76 when examining only the most common CPT codes.

Conclusions: ChatGPT-4 can aid in automating CPT billing from orthopedic surgery operative notes, driving down healthcare expenditures and enhancing billing code precision as the model evolves and fine-tuning becomes available.

Download full-text PDF

Source
http://dx.doi.org/10.1177/21925682231224753DOI Listing

Publication Analysis

Top Keywords

cpt codes
16
operative notes
16
large language
8
model
8
language model
8
cpt
8
surgical operative
8
trial included
8
list cpt
8
cpt code
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!