J Acoust Soc Am
Department of Mechanical and Aerospace Engineering, University at Buffalo (SUNY), Buffalo, New York 14260-4400, USA.
Published: December 2023
Thermoacoustic refrigerators exploit the thermodynamic interaction between oscillating gas particles and a porous solid to generate a temperature gradient that provides a cooling effect. In this work, we present a resonator with dual enclosed driver end-caps and show that the temperature gradient across a ceramic thermoacoustic element placed in the cavity could be controlled by modifying the phase difference of the drivers, thus enabling precise control of the refrigeration capability via the temperature difference. Through deltaec simulation results, the response of the temperature gradient to various dynamic boundary conditions that alter the time-phasing and wave dynamics in the resonator are demonstrated. An experimental apparatus is constructed with two moving-coil speakers and a ceramic stack, which is shown to exhibit a temperature gradient along its length, based on the traveling-wave-like nature of the acoustic wave excited by the speakers. By adjusting the relative phase lag between the two speakers, the temperature gradient across the stack is made to increase, decrease, or flip sign. Finally, a desired temperature difference that changes in time is achieved. The results presented in this work represent a key conceptual advancement of thermoacoustic-based temperature control devices that can better serve in extreme environments and precision applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0023954 | DOI Listing |
J Mol Model
January 2025
Shanxi Jiangyang Chemical Limited Company, Taiyuan, 030041, Shanxi, China.
Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.
View Article and Find Full Text PDFMol Ecol
January 2025
Department of Biology, Colorado State University, Fort Collins, Colorado, USA.
Identifying populations at highest risk from climate change is a critical component of conservation efforts. However, vulnerability assessments are usually applied at the species level, even though intraspecific variation in exposure, sensitivity and adaptive capacity play a crucial role in determining vulnerability. Genomic data can inform intraspecific vulnerability by identifying signatures of local adaptation that reflect population-level variation in sensitivity and adaptive capacity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, 21944, Taif, Saudi Arabia.
This study investigates the use of machine learning models to predict solubility of rivaroxaban in binary solvents based on temperature (T), mass fraction (w), and solvent type. Using a dataset with over 250 data points and including solvents encoded with one-hot encoding, four models were compared: Gradient Boosting (GB), Light Gradient Boosting (LGB), Extra Trees (ET), and Random Forest (RF). The Jellyfish Optimizer (JO) algorithm was applied to tune hyperparameters, enhancing model performance.
View Article and Find Full Text PDFLight Sci Appl
January 2025
National and Local United Engineering Laboratory of Flat Panel Display Technology, College of Physics and Information Engineering, Fuzhou University, 350108, Fuzhou, China.
Multifunctional materials have attracted tremendous attention in intelligent and interactive devices. However, achieving multi-dimensional sensing capabilities with the same perovskite quantum dot (PQD) material is still in its infancy, with some considering it currently challenging and even unattainable. Drawing inspiration from neurons, a novel multifunctional CsPbBr/PDMS nanosphere is devised to sense humidity, temperature, and pressure simultaneously with unique interactive responses.
View Article and Find Full Text PDFEcol Lett
January 2025
Department of Geography, Faculty of Science, Environment and Economy, University of Exeter, Exeter, UK.
Understanding the effects of multiple stressors has become a major focus in ecology and evolution. While many studies have investigated the combined effects of stressors, revealing massive variability, a mechanistic understanding that reconciles the diversity of multiple stressor outcomes is lacking. Here, we show how performance curves can fill this gap by revealing mechanisms that shape multiple stressor outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.