Boron is the archetypal Lewis acid, and therefore it is only natural that it prefers to bind nitrogen, its usual Lewis base counterpart. To challenge this assumption, we present a computationally designed bicyclopentane molecule akin to [1.1.1]propellane, but with pyramidal B and N inner atoms bonded by an "inverted" dative bond. Unexpectedly, the dimer of this system prefers to interact via an atypical boron-boron bond over the supposedly obvious boron-nitrogen bond. A molecular orbital analysis shows that the boron in this peculiar entity acts both as an electron donor and an electron acceptor, making the dimerization an amphoteric-amphoteric interaction process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.202300875 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Computation, Information and Technology, Technical University of Munich, Garching 85748, Germany.
Two-dimensional layered materials (2DLMs) have received increasing attention for their potential in bioelectronics due to their favorable electrical, optical, and mechanical properties. The transformation of the planar structures of 2DLMs into complex 3D shapes is a key strategic step toward creating conformal biointerfaces with cells and applying them as scaffolds to simultaneously guide their growth to tissues and enable integrated bioelectronic monitoring. Using a strain-engineered self-foldable bilayer, we demonstrate the facile formation of predetermined 3D microstructures of 2DLMs with controllable curvatures, called microrolls.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, Jiangsu Province 221116, China.
Geometries and electronic structures of planar and quasi-planar boron clusters resemble those of aromatic hydrocarbons, providing opportunities for designing novel nonlinear optical materials. However, the nonlinear optical properties, optical-response mechanisms, and optimal optical-response geometries of boron clusters remain unclear. Accordingly, this study addresses these uncertainties.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
Heteropolar two-dimensional materials, including hexagonal boron nitride (hBN), are promising candidates for seawater desalination and osmotic power harvesting, but previous simulation studies have considered bare, unterminated nanopores in molecular dynamics (MD) simulations. There is presently a lack of force fields to describe functionalized nanoporous hBN in aqueous media. To address this gap, we conduct density functional theory (DFT)-based ab initio MD simulations of hBN nanopores surrounded by water molecules.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Soil Science, Faculty of Agriculture, University of Jiroft, Jiroft, 7867161167, Iran.
This study focuses on developing biochar-based adsorbents with high adsorption capacity and rapid adsorption rates for removing boron from aqueous solutions. Hydroxy-enriched biochar composites (BC (carboxylated biochar), BC-PDA (polydopamine loaded biochar), MBC-PDA (polydopamine loaded magnetic biochar), BC-AlOOH (AlOOH loaded biochar), and BC-ZnCl (biochar modified by ZnCl)) were synthesized specifically for boron adsorption to utilize the superior adsorption capacity of biochar. All adsorbents were synthesized using straightforward experimental techniques from date palm cellulosic fibers as promising lignocellulose feedstock and subjected to various characterization methods.
View Article and Find Full Text PDFACS Sens
January 2025
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
The simultaneous detection of electroencephalography (EEG) signals and neurotransmitter levels plays an important role as biomarkers for the assessment and monitoring of emotions and cognition. This paper describes the development of boron and nitrogen codoped graphene-diamond (BNGrD) microelectrodes with a diameter of only 200 μm for sensing EEG signals and dopamine (DA) levels, which have been developed for the first time. The optimized BNGrD microelectrode responded sensitively to both EEG and DA signals, with a signal-to-noise ratio of 9 dB for spontaneous EEG signals and a limit of detection as low as 124 nM for DA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!