The beneficial role of carnosine during in vitro digestion of meat was previously demonstrated, and it was hypothesized that such benefits could also be obtained in a meal system. The current study, therefore, assessed carnosine effects on markers of lipid and protein oxidation and of advanced glycation end products (AGEs) during gastric and duodenal in vitro digestion of a burger meal model. The model included intrinsic (low) and enhanced (medium and high) carnosine levels in a mix of pork mince and bread, with or without ascorbic acid (AA) and/or fructose as anti- and prooxidants, respectively. In the presence of either AA or fructose, a carnosine prooxidative potential during digestion was observed at the medium carnosine level depending on markers and digestive phases. However, free carnosine found at the high carnosine level exerted a protective effect reducing the formation of 4-hydroxynonenal in the gastric phase and glyoxal in both the gastric and duodenal phases. Dual effects of carnosine are likely concentration related, whereby at the medium level, free radical production increases through carnosine's ferric-reducing capacity, but there is insufficient quantity to reduce the resulting oxidation, while at the higher carnosine level some decreases in oxidation are observed. In order to obtain carnosine benefits during meal digestion, these findings demonstrate that consideration must be given to the amount and nature of other anti- and prooxidants present and any potential interactions. PRACTICAL APPLICATION: Carnosine, a natural compound in meat, is a multifunctional and beneficial molecule for health. However, both pro- and antioxidative effects of carnosine were observed during digestion of a model burger meal when ascorbic acid was included at a supplemental level. Therefore, to obtain benefits of dietary carnosine during digestion of a meal, consideration needs to be given to the amount and nature of all anti- and prooxidants present and any potential interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.16854 | DOI Listing |
Nutrients
December 2024
Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia.
: Following previous findings on high-salt (HS)-intake-related increase of oxidative stress, this study explored whether carnosine (CAR; β-alanyl-L-histidine), a reactive oxygen species (ROS) scavenger, enhanced antioxidative defence and vascular function following HS, potentially via the NRF2 or HIF-1α signalling pathway. : Sprague Dawley rats (64, 8-10 weeks old, both sexes) were divided into four groups (n = 6/group): CTRL (0.4% NaCl), HS (4% NaCl for 7 days), CTRL + CAR (0.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Biomaterials Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran. Electronic address:
Nutrients
December 2024
Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia.
Background/objectives: Type 2 diabetes (T2D) is associated with an increased risk of adverse musculoskeletal outcomes likely due to heightened chronic inflammation, oxidative stress, and advanced glycation end-products (AGE). Carnosine has been shown to have anti-inflammatory, anti-oxidative, and anti-AGE properties. However, no clinical trials have examined the impact of carnosine on musculoskeletal health in adults with prediabetes or T2D.
View Article and Find Full Text PDFMicroorganisms
December 2024
Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
Microbial adsorption is a cost-effective and environmentally friendly remediation method for heavy metal pollution. The adsorption mechanism of cadmium (Cd) by bacteria inhabiting extreme environments is largely unexplored. This study describes the biosorption of Cd by sp.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Chemistry, College of Science, Taif University, Taif P.O. Box 11099, Saudi Arabia.
In this study, new monolithic poly(9-anthracenylmethyl methacrylate-co-trimethylolpropane trimethacrylate (TRIM) columns, referred as ANM monoliths were prepared, for the first time, and were used for the separation media for biomolecules and proteomics analysis by nano-liquid chromatography (nano-LC). Monolithic columns were prepared by in situ polymerization of 9-anthracenylmethyl methacrylate (ANM) and trimethylolpropane trimethacrylate (TRIM) in a fused silica capillary column of 100 µm ID. Polymerization solution was optimized in relation to monomer and porogenic solvent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!