Polymer patching on inorganic nanoparticles (NPs) enables multifunctionality and directed self-assembly into nonclosely packed optical and mechanical metamaterials. However, experimental demonstration of such assemblies has been scant due to challenges in leveraging patch-induced NP-NP attractions and understanding NP self-assembly dynamics. Here we use low-dose liquid-phase transmission electron microscopy to visualize the dynamic behaviors of tip-patched triangular nanoprisms upon patch-clasping, where polymer patches interpenetrate to form cohesive bonds that connect NPs. Notably, these bonds are longitudinally robust but rotationally flexible. Patch-clasping is found to allow highly selective tip-tip assembly, interconversion between dimeric bowtie and sawtooth configurations, and collective structural relaxation of NP networks. The integration of single particle tracking, polymer physics theory, and molecular dynamics simulation reveals the macromolecular origin of patch-clasping-induced NP dynamics. Our experiment-computation integration can aid the design of stimuli-responsive nanomaterials, such as topological metamaterials for chiral sensors, waveguides, and nanoantennas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c09710 | DOI Listing |
Methods Mol Biol
January 2025
Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.
Lineage tracing based on modern live imaging approaches enables to visualize, reconstruct, and analyze the developmental history, fate, and dynamic behaviors of cells in vivo in a direct, comprehensive, and quantitative manner. Light-sheet fluorescence microscopy (LSFM) has greatly boosted lineage tracing efforts, because fluorescently labeled specimens can be imaged in their entirety, over long periods of time, with high spatiotemporal resolution and minimal photodamage. In addition, an increasing arsenal of commercial and open-source software solutions for cell and nuclei segmentation and tracking can be employed to convert data from pixel-based to object-based representations, and to reconstruct the lineages of cells in their native context as they organize in tissues, organs, and whole organisms.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain.
Pancreatic ductal adenocarcinoma (PDAC) is a very challenging disease with a very poor prognosis. It is characterized by a dense desmoplastic stroma that hampers drug penetration and limits the effectiveness of conventional chemotherapy (CT). As an alternative, the combination of CT with hyperthermia (HT) has been proposed as an innovative treatment modality for PDAC.
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) is a genetic cardiac disorder associated with an increased risk of arrhythmias, heart failure, and sudden cardiac death. Current imaging and clinical markers are not fully sufficient in accurate diagnosis and patient risk stratification. Although known cardiac biomarkers in blood are used, they lack specificity for HCM and primarily stratify for death due to heart failure in overt cases.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Internal Medicine III, School of Medicine and Health, Technical University of Munich, Munich, Germany.
Despite recent advances in the targeted therapy of AML, the disease continues to have a poor prognosis. Allogeneic hematopoietic stem cell transplantation (alloSCT) remains to be the curative therapy option for fit patients with high-risk disease. Especially patients with relapsed or refractory (r/r) AML continue to have poor outcomes.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
January 2025
University of Arizona, College of Biomedical Engineering, Tucson, Arizona, United States.
Purpose: Diffusion magnetic resonance imaging (dMRI) quantitatively estimates brain microstructure, diffusion tractography being one clinically utilized framework. To advance such dMRI approaches, direct quantitative comparisons between microscale anisotropy and orientation are imperative. Complete backscattering Mueller matrix polarized light imaging (PLI) enables the imaging of thin and thick tissue specimens to acquire numerous optical metrics not possible through conventional transmission PLI methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!