Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bacteria use a diverse range of carbohydrates to generate a profusion of glycans, with amino sugars, such as -acetylglucosamine (GlcNAc), being prevalent in the cell wall and in many exopolysaccharides. The primary substrate for GlcNAc-containing glycans, UDP-GlcNAc, is the product of the bacterial hexosamine pathway and a key target for bacterial metabolic glycan engineering. Using the strategy of expressing NahK, to circumvent the hexosamine pathway, it is possible to directly feed the analogue of GlcNAc, -azidoacetylglucosamine (GlcNAz), for metabolic labeling in . The cytosolic production of UDP-GlcNAz was confirmed by using fluorescence-assisted polyacrylamide gel electrophoresis. The key question of where GlcNAz is incorporated was interrogated by analyzing potential sites including peptidoglycan (PGN), the biofilm-related exopolysaccharide poly-β-1,6--acetylglucosamine (PNAG), lipopolysaccharide (LPS), and the enterobacterial common antigen (ECA). The highest levels of incorporation were observed in PGN with lower levels in PNAG and no observable incorporation in LPS or ECA. The promiscuity of the PNAG synthase (PgaCD) toward UDP-GlcNAz in vitro and the lack of undecaprenyl-pyrophosphoryl-GlcNAz intermediates generated in vivo confirmed the incorporation preferences. The results of this work will guide the future development of carbohydrate-based probes and metabolic engineering strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138243 | PMC |
http://dx.doi.org/10.1021/acschembio.3c00501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!