Increased neurotoxicity of high-density lipoprotein secreted from murine reactive astrocytes deficient in a peroxisomal very-long-chain fatty acid transporter Abcd1.

J Inherit Metab Dis

Sohyaku, Innovative Research Division, Research Unit/Neuroscience, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Kanagawa, Japan.

Published: March 2024

X-linked adrenoleukodystrophy (X-ALD) is a genetic neurodegenerative disorder caused by pathogenic variants in ABCD1, resulting in the accumulation of very-long-chain fatty acids (VLCFAs) in tissues. The etiology of X-ALD is unclear. Activated astrocytes play a pathological role in X-ALD. Recently, reactive astrocytes have been shown to induce neuronal cell death via saturated lipids in high-density lipoprotein (HDL), although how HDL from reactive astrocytes exhibits neurotoxic effects has yet to be determined. In this study, we obtained astrocytes from wild-type and Abcd1-deficient mice. HDL was purified from the culture supernatant of astrocytes, and the effect of HDL on neurons was evaluated in vitro. To our knowledge, this study shows for the first time that HDL obtained from Abcd1-deficient reactive astrocytes induces a significantly higher level of lactate dehydrogenase (LDH) release, a marker of cell damage, from mouse primary cortical neurons as compared to HDL from wild-type reactive astrocytes. Notably, HDL from Abcd1-deficient astrocytes contained significantly high amounts of VLCFA-containing phosphatidylcholine (PC) and LysoPC. Activation of Abcd1-deficient astrocytes led to the production of HDL containing decreased amounts of PC with arachidonic acid in sn-2 acyl moieties and increased amounts of LysoPC, presumably through cytosolic phospholipase A α upregulation. These results suggest that compositional changes in PC and LysoPC in HDL, due to Abcd1 deficiency and astrocyte activation, may contribute to neuronal damage. Our findings provide novel insights into central nervous system pathology in X-ALD.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jimd.12703DOI Listing

Publication Analysis

Top Keywords

reactive astrocytes
20
astrocytes
10
hdl
9
high-density lipoprotein
8
very-long-chain fatty
8
hdl abcd1-deficient
8
abcd1-deficient astrocytes
8
reactive
5
increased neurotoxicity
4
neurotoxicity high-density
4

Similar Publications

Background: Acupoint catgut embedding (ACE) is a traditional Chinese medicine technique commonly used for managing various disorders, including chronic inflammatory pain and allergic asthma. Despite its growing use, the neuroimmunological mechanisms underlying ACE treatment effects remain unclear.

Methods: This study investigated the roles and potential mechanisms of the effects of ACE in treating experimental autoimmune encephalomyelitis (EAE), a frequently used animal model of autoimmune neuroinflammation.

View Article and Find Full Text PDF

Mogroside V ameliorates astrocyte inflammation induced by cerebral ischemia through suppressing TLR4/TRADD pathway.

Int Immunopharmacol

January 2025

Medical College of Guangxi University, Guangxi University, Nanning 530004, China; Fujian Maternity and Child Health Hospital, Fuzhou, 350001, China; Stem Cell Therapy Research Center, Fuzhou 350001, China.. Electronic address:

Inflammation and oxidative stress are pivotal factors in the onset and progression of secondary injury following cerebral ischemia-reperfusion (I/R). Mogroside V (MV), a primary active compound of Siraitia grosvenorii, exhibits significant anti-inflammatory and antioxidant properties. However, its specific effects in cerebral ischemia remain unclear.

View Article and Find Full Text PDF

Traumatic brain injury is one of the most common cerebral incidences worldwide. Repetitive mild traumatic brain injuries occurring, for example, in athletes or victims of abuse, can cause chronic neurodegeneration due to neuroinflammation, in which the crosstalk between reactive astrocytes and activated microglia is crucial for modulating neuronal damage. The inducible enzyme heme oxygenase-1 and its product carbon monoxide are known to be ascribed neuroprotective and anti-inflammatory properties.

View Article and Find Full Text PDF

APOE Christchurch enhances a disease-associated microglial response to plaque but suppresses response to tau pathology.

Mol Neurodegener

January 2025

Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA.

Background: Apolipoprotein E ε4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). A recent case report identified a rare variant in APOE, APOE3-R136S (Christchurch), proposed to confer resistance to autosomal dominant Alzheimer's Disease (AD). However, it remains unclear whether and how this variant exerts its protective effects.

View Article and Find Full Text PDF

TDP43 augments astrocyte inflammatory activity through mtDNA-cGAS-STING axis in NMOSD.

J Neuroinflammation

January 2025

Department of Neurology, Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.

Abnormality in transactivating response region DNA binding protein 43 (TDP43) is well-recognized as the pathological hallmark of neurodegenerative diseases. However, the role of TDP43 in neuromyelitis optica spectrum disorder (NMOSD) remains unknown. Here, our observations demonstrate an upregulation of TDP43 in both in vitro and in vivo models of NMOSD, as well as in biological samples from NMOSD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!